
Towards Tight Security of Cascaded LRW2

Bart Mennink

Radboud University (The Netherlands)

Theory of Cryptography Conference 2018

November 13, 2018

1 / 20



Tweakable Blockciphers

m E c
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• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation
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Tweakable Blockciphers in OCBx
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• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

• Internally based on tweakable blockcipher Ẽ
• Tweak (N, index) is unique for every evaluation
• Di�erent blocks always transformed under di�erent tweak

• Security of mode often dictated by that of Ẽ
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3 / 20



Tweakable Blockciphers in OCBx

Ẽ
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Tweakable Blockcipher Security

4 indistsimpletE

ICẼk p̃

distinguisher D

tweakable blockcipher random tweakable permutation

• Ẽk should look like random permutation for every t

• Di�erent tweaks −→ pseudo-independent permutations

• D tries to determine which oracle it communicates with

Advstprp

Ẽ
(D) =

∣∣∣Pr
[
DẼk,Ẽ

−1
k = 1

]
−Pr

[
Dπ̃,π̃−1

= 1
]∣∣∣
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Original Constructions

• LRW1 and LRW2 by Liskov et al. [LRW02]:

m Ek Ek c

t

m Ek c

h(t) h(t)

• h is XOR-universal hash

• Related: XEX [Rog04] and relatives

• Tightly secure up to 2n/2 queries
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Cascading LRW2's

m Ek1 Ek2 . . . . . . Ekρ c

h1(t) h1(t)⊕ h2(t) hρ−1(t)⊕ hρ(t) hρ(t)

• LRW2[ρ]: concatenation of ρ LRW2's

• k1, . . . , kρ and h1, . . . , hρ independent

• ρ = 2: secure up to 22n/3 queries [LST12,Pro14]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [LS13]

• Best attack: 2n queries
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�Cascaded LRW2�
= LRW2[2]
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Cascading TEM's

m P1 P2 . . . . . . Pρ c

h1(t) h1(t)⊕ h2(t) hρ−1(t)⊕ hρ(t) hρ(t)

• TEM[ρ]: concatenation of ρ TEM's

• P1, . . . , Pρ and h1, . . . , hρ independent

• ρ = 2: secure up to 22n/3 queries [CLS15]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [CLS15]

• Best attack: 2ρn/(ρ+1) queries [BKL+12]
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Tight Security of Cascaded LRW2?

m Ek1 Ek2 c

h1(t) h1(t)⊕ h2(t) h2(t)

n/2 2n/3 3n/4 n

gap

improved attack
(generalized construction)

improved bound
(conditionally)

carries over to LRW2[3]�LRW2[5]
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Improved Attack

• GCL (Generalized Cascaded LRW2):

m Ek1 Ek2 c

f1(t) f2(t) f3(t)

• fi are arbitrary functions

• pi := Eki are random permutations

Generic distinguishing attack in 2n1/223n/4 evaluations
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Improved Attack: Rationale
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• Distinguisher D makes various queries
for two di�erent tweaks: t and t′

• Suppose it makes 4 queries such that

m1 ⊕ f1(t) = m′2 ⊕ f1(t′)

c′2 ⊕ f3(t′) = c3 ⊕ f3(t)

m3 ⊕ f1(t) = m′4 ⊕ f1(t′)

• Necessarily,

c1 ⊕ f3(t) = c′4 ⊕ f3(t′)

• Stated di�erently:

m1 ⊕m′2 = m3 ⊕m′4 = f1(t)⊕ f1(t′)

c′2 ⊕ c3 = c1 ⊕ c′4 = f3(t)⊕ f3(t′)
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c′2 ⊕ c3 = c1 ⊕ c′4 = f3(t)⊕ f3(t′)

• But D does not know f1(t)⊕ f1(t′)

• Choose the mi's and m
′
i's such that

for any d, there are 2n quadruples
such that m1 ⊕m′2 = m3 ⊕m′4 = d
(costs 23n/4 queries for both t and t′)

• E[solutions to c′2 ⊕ c3 = c1 ⊕ c′4]?
2 if d = f1(t)⊕ f1(t′), 1 otherwise

• Extend the number of queries by
factor n1/2 to eliminate false positives
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Improved Attack: Veri�cation

Theoretical Veri�cation

• Assuming n ≥ 27, the success probability of D is at least 1/2

• Analysis consists of properly bounding Pr
[
DẼk = 1

]
and Pr

[
Dπ̃ = 1

]

Experimental Veri�cation

• Small-scale implementation for n = 16, 20, 24

• Nd is the number of hits c′2 ⊕ c3 = c1 ⊕ c′4
Nd in real world for d = Nd in ideal world for d =

n n1/2 ≈ q f1(t)⊕ f1(t′) random f1(t)⊕ f1(t′) random

16 2 4 · 212 256.593750 129.781250 127.093750 127.375000

20 2 4 · 215 265.531250 133.312500 125.625000 128.750000

24 2 4 · 218 246.750000 131.375000 120.625000 129.875000

13 / 20
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Improved Security Bound

• Cascaded LRW2:

m Ek1 Ek2 c

h1(t) h1(t)⊕ h2(t) h2(t)

• Eki are SPRP-secure

• hi are 4-wise independent XOR-universal hash

• No tweak is queried more than 2n/4 times

Cascaded LRW2 is secure up to ≈ 23n/4 evaluations

14 / 20



Improved Security Bound

• Cascaded LRW2:

m Ek1 Ek2 c

h1(t) h1(t)⊕ h2(t) h2(t)

• Eki are SPRP-secure

• hi are 4-wise independent XOR-universal hash

• No tweak is queried more than 2n/4 times

Cascaded LRW2 is secure up to ≈ 23n/4 evaluations

14 / 20



Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

• Replace Eki by random permutations pi

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

Step 2: Patarin's H-Coe�cient Technique

• Main task: given q evaluations of cascaded LRW2,
derive lower bound on #{(p1, p2)}

• Lower bound should hold for the �most likely� transcripts

15 / 20
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

⇐⇒

m⊕ h1(t)

c⊕ h2(t)

h1(t)⊕ h2(t)

• 2 unknowns: X := p1(m⊕ h1(t)) and Y := p−1
2 (c⊕ h2(t))

• 1 equation: X ⊕ Y = h1(t)⊕ h2(t)

• Lower bound on #{(p1, p2)} related to the number of choices (X,Y )

16 / 20



Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

⇐⇒

m⊕ h1(t)

c⊕ h2(t)

h1(t)⊕ h2(t)

• 2 unknowns: X := p1(m⊕ h1(t)) and Y := p−1
2 (c⊕ h2(t))

• 1 equation: X ⊕ Y = h1(t)⊕ h2(t)

• Lower bound on #{(p1, p2)} related to the number of choices (X,Y )

16 / 20



Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

⇐⇒

m⊕ h1(t)

c⊕ h2(t)

h1(t)⊕ h2(t)

• 2 unknowns: X := p1(m⊕ h1(t)) and Y := p−1
2 (c⊕ h2(t))

• 1 equation: X ⊕ Y = h1(t)⊕ h2(t)

• Lower bound on #{(p1, p2)} related to the number of choices (X,Y )

16 / 20



Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

m̄1 m̄2 = m̄3 m̄4 = m̄5 = m̄6 m̄7

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 = c̄7

f(t1) f(t2) f(t3) f(t4)

f(t5)

f2(t6) f2(t7)

notation:
m̄i = mi ⊕ h1(ti)
c̄i = ci ⊕ h2(ti)

f(ti) = h1(ti)⊕ h2(ti)

• r1 unknowns for p1, r2 unknowns for p2, and q equations

• Two potential problems:

(i) Graph contains circle
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Improved Security Bound: Proof Idea (4)

Step 5: Patarin's Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1, p2) is at least

2n!2n!

2nq
·
(

1− 4q

2n

)

• Lower bound on #{(p1, p2)} su�cient to derive 23n/4 security
(some technicality involved)

• Violation of (i), (ii), or (iii) with probability at most O(q4/23n)

• We apply mirror theory up to the �rst iteration
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Improved Security Bound: Bottlenecks

Excessively Large Tree

• Badness probability relies on
• tweak limitation
• 4-wise independence of hash functions

Mirror Theory

• Mirror theory developed for comparison with PRF, not with PRP

• Problem mitigated due to tweak limitation
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Conclusion

Cascaded LRW2 (or LRW2[2])

• Generic attack in complexity 3n/4

• 3n/4 security bound, but conditional

• Security bound carries over to LRW2[3]�LRW2[5]

Challenges

• Tightness of cascaded LRW2 without side conditions?

• Longer cascades of LRW2[ρ] and TEM[ρ]?

Thank you for your attention!
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SUPPORTING SLIDES
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Updated State of the Art on LRW2[ρ]

n/2 2n/3 3n/4 5n/6 n
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improved attack
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H-Coe�cient Technique

• Patarin [Pat91,Pat08]

• Popularized by Chen and Steinberger [CS14]

• Similar to �Strong Interpolation Technique� [Ber05]

2 indistsimpleO

IC

construction

O P

distinguisher D

• Basic idea:
• Each conversation de�nes a transcript τ

• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability
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H-Coe�cient Technique

• D is computationally unbounded and deterministic

• Each conversation de�nes a transcript τ

• Consider good and bad transcripts

Lemma
Let ε ≥ 0 be such that for all good transcripts τ :

Pr [O gives τ ]

Pr [P gives τ ]
≥ 1− ε

Then, ∆D(O;P ) ≤ ε+ Pr [bad transcript for P]

Trade-o�: de�ne bad transcripts smartly!
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Mirror Theory

System of Equations

• Consider r distinct unknowns P = {P1, . . . , Pr}
• Consider a system of q equations of the form:

Pa1 ⊕ Pb1 = λ1

Pa2 ⊕ Pb2 = λ2

...

Paq ⊕ Pbq = λq

for some surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Goal

• Lower bound on the number of solutions to P
such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r}
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Mirror Theory

Patarin's Result

• Extremely powerful lower bound

• Has remained rather unknown since introduction (2003)

Authors Publication Application Mirror Bound

Patarin CRYPTO 2003 Feistel Suboptimal

Patarin CRYPTO 2004 Feistel
Patarin ICISC 2005 Feistel Optimal in O(·)
Patarin, Montreuil ICISC 2005 Benes
Patarin ICITS 2008 XoP
Patarin AFRICACRYPT 2008 Benes
Patarin ePrint 2010/287 XoP Concrete bound
Patarin ePrint 2010/293 Feistel
Patarin ePrint 2013/368 XoP
Cogliati, Lampe, Patarin FSE 2014 XoPd

Volte, Nachef, Marrière ePrint 2016/136 Feistel
Iwata, Mennink, Vizár ePrint 2016/1087 CENC
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Mirror Theory

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}
Graph Based View

Pa1 =Pa2

Pb1

Pb3

Pa4 =Pa5

Pb5

Pb2 =Pa3 =Pb4

λ1

λ2

λ3

λ4

λ5

Pa6

Pb6

λ6

Pa7

Pb7λ7

Pa8 Pa9

Pb8 =Pb9 =Pb10 =Pa11

Pa10

Pb11

λ8

λ9

λ10 λ11
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Mirror Theory: Toy Example 1

• System of equations:
Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

If λ1 = 0 or λ2 = 0 or λ1 = λ2

• Contradiction: Pa = Pb or Pb = Pc or Pa = Pc

• Scheme is degenerate

If λ1, λ2 6= 0 and λ1 6= λ2

• 2n choices for Pa

• Fixes Pb = λ1 ⊕ Pa (which is 6= Pa as desired)

• Fixes Pc = λ2 ⊕ Pb (which is 6= Pa, Pb as desired)

28 / 20
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Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)
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Mirror Theory: Toy Example 3

• System of equations:
Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

Pc ⊕ Pa = λ3

• Assume λi 6= 0 and λi 6= λj

If λ1 ⊕ λ2 ⊕ λ3 6= 0

• Contradiction: equations sum to 0 = λ1 ⊕ λ2 ⊕ λ3

• Scheme contains a circle

If λ1 ⊕ λ2 ⊕ λ3 = 0

• One redundant equation, no contradiction

• Still counted as circle
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Mirror Theory: Two Problematic Cases

Circle Degeneracy

Pa1 = Pb5

Pb1 = Pa2

Pb2 = Pa3

Pb3 = Pa4

Pb4 = Pa5

λ1

λ2

λ3

λ4

λ5

Pa1 =Pa2 Pb1

Pa3 =Pa4

Pb4 = Pa5

Pb2 =Pb3

λ1

λ2
λ3

λ4

Pa8

Pb7 = Pb8

λ1 ⊕ λ2 ⊕ · · · ⊕ λ7

Pb5 = Pa6

Pb6 = Pb7λ6
λ5

λ7
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Mirror Theory: Main Result

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Main Result

If the system of equations is circle-free and non-degenerate, the number of
solutions to P such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r} is at least

(2n)r
2nq

provided the maximum tree size ξ satis�es (ξ − 1)2 · r ≤ 2n/67
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Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}

• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns

33 / 20



Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}
• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns

33 / 20



Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}
• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns

33 / 20



Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}
• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns

33 / 20



Mirror Theory Applied to XoP

Pa1

Pb1

Pa2

Pb2

Paq

Pbq

· · ·y1 y2 yq

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi 6= 0 for all i

−→ Call this a bad transcript

• Maximum tree size 2

• If 2q ≤ 2n/67: at least
(2n)2q

2nq solutions to unknowns
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Mirror Theory Applied to XoP

H-Coe�cient Technique [Pat91,Pat08,CS14]

Let ε ≥ 0 be such that for all good transcripts τ :

Pr [XoP gives τ ]

Pr [f gives τ ]
≥ 1− ε

Then, Advprf
XoP(q) ≤ ε+ Pr [bad transcript for f ]

• Bad transcript: if yi = 0 for some i
• Pr [bad transcript for f ] = q/2n

• For any good transcript:

• Pr [XoP gives τ ] ≥ (2n)2q
2nq · 1

(2n)2q

• Pr [f gives τ ] = 1
2nq

Advprf
XoP(q) ≤ q/2n
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New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual:

Towards Optimal Security Using Mirror Theory

Mennink, Neves, CRYPTO 2017

• Refurbish and modernize mirror theory

• Prove optimal PRF security of:

E(WC)DM [CS16]

x p1 p2 y

h(m)

EDMD

x p1 p2 y
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