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Tweakable Blockciphers

e Tweak: flexibility to the cipher

e Each tweak gives different permutation
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Tweakable Blockciphers in OCBx

OM; My My
~N,tm, ~N,tm ~N,tm
B, Mo ‘Ek . ‘Ek 2
Cq Co
T

e Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

e Internally based on tweakable blockcipher E
e Tweak (IV,index) is unique for every evaluation
e Different blocks always transformed under different tweak

e Security of mode often dictated by that of E

Ntmy
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Tweakable Blockcipher Security

p

random tweakable permutation

Ey

tweakable blockcipher

distinguisher D

o E}, should look like random permutation for every ¢

e Different tweaks — pseudo-independent permutations
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Tweakable Blockcipher Security

p

random tweakable permutation

Ey

tweakable blockcipher

distinguisher D

o E}, should look like random permutation for every ¢
e Different tweaks — pseudo-independent permutations

e D tries to determine which oracle it communicates with

AdviP™P (D) = ‘Pr {ka’ﬁk‘ = 1] _Pr [Dﬁ‘l - 1”
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Original Constructions

e LRW; and LRW, by Liskov et al. [LRW02]:

m B oy

e h is XOR-universal hash
e Related: XEX [Rog04] and relatives
o Tightly secure up to 2"/? queries

h(t)
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Cascading LRW,'s

EBhg()

‘Ek .

L

2

e LRW;[p]: concatenation of p LRW;'s

° kl,...,k:pand hl,...,h

o independent

o

“Cascaded LRW,"

= LRW,[2]




Cascading LRW,'s

@ ha 1) hpe1 () ® (D)

AT T

LRW;[p]: concatenation of p LRW;'s
ki,...,k, and hi,..., h, independent §

“Cascaded LRW,"

= LRW,[2]

e p=2: secure up to 2%/3 queries [LST12,Prol4]

e p > 2 even: secure up to 27"/ (P+2) queries [LS13]

Best attack: 2" queries

C



Cascading TEM's

@ ha(t) hp—1(t) @ hp(t)

hp(t)

%LD p2 ...... L @

e TEM[p]: concatenation of p TEM's
e Pi,...,P,and hy,...,h, independent

D



Cascading TEM's

@ ha 1) hpe1 () ® (D)

hp(t)

AT e

TEM]|p]: concatenation of p TEM's
e Pi,...,P,and hy,...,h, independent

e p=2: secure up to 2°"/3 queries [CLS15]
e p > 2 even: secure up to 2°"/(P2) queries [CLS15]
Best attack: 27*/(r*1) queries [BKL+12]

C
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This work
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Tight Security of Cascaded LRW,?

hi(t) h1(t) EB ha(t) ha(t)

AaTes1

n/2 2n/3 3n/4 n
gap
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Tight Security of Cascaded LRW,?

ha(t) hyi(t) @ ha(t) ha(t)
m Ek1 L Ekz l &
n/2 2n/3 3n/4 n

\_/(
improved bound
(conditionally)

improved attack
(generalized construction)
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Tight Security of Cascaded LRW,?

hi(t) h1(t) EB ha(t) ha(t)
m %J}— Ek EkQ (L C
n/2 2n/3 3n/4 n
| | |
\_/‘
improved bound
(conditionally)
improved attack
/ (generalized construction)

carries over to LRW,[3]-LRW,[5]
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Improved Attack

e GCL (Generalized Cascaded LRW>):

f1(t) fa(t) f3(t)

D S e T Wl

e f; are arbitrary functions

e p; := E}, are random permutations
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Improved Attack

e GCL (Generalized Cascaded LRW>):

f1(t) fa(t)

e

ey
w
~
=~
N

S
)

e f; are arbitrary functions

e p; := E}, are random permutations

Generic distinguishing attack in 2n'/223%/ evaluations
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Improved Attack: Rationale

e Distinguisher D makes various queries

for two different tweaks: ¢ and ¢/

C1

my

S

B = 0

—

Ly

C3

m3

4
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ms

Improved Attack: Rationale
e Distinguisher D makes various queries
for two different tweaks: ¢ and ¢/
e Suppose it makes 4 queries such that
D (;;w D (;;7 D C1 ! #
S S R S G S m1 @ fi(t) = my @ f1(t)
P T U e | &4 f3lt) = ¢ @ f(t)
m3 @ fi(t) =my @ f1(t)
fany m Pany m Pany /
ARG R S Gl I
h®) Fa(t)) Fa(t')
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Improved Attack: Rationale

e Distinguisher D makes various queries
for two different tweaks: ¢ and ¢/

e Suppose it makes 4 queries such that

o () o (1 o
B A G B S el R my @ fi(t) = mh & fi(t)
flft) fzft) : f3ft) 0/2 @f?,(t/) =c3 @f3(t)
ma3 @ @ © ‘ (P? D C3 / /
) 2 m3 @ fi(t) =my & f(t')
) ? @ ? @ @{ & o Necessarily,
! o /
n@) n) | 3% 1 ® fot) = 4 @ f3(t)
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Improved Attack: Rationale

Distinguisher D makes various queries
for two different tweaks: ¢ and ¢/

e Suppose it makes 4 queries such that

o () o (1 ) o
B A G B S el R my @ fi(t) = mh & fi(t)
flft) m f2ft) : m f3¢(t) C/2 @ f3 (t/) =c3D f3 (t)
ma3 @ Lfi) © Lfij D C3 _ / /
| m3 @ f1(t) =my ® f1(t)
/ o (] o | (o) o / o Necessarily,
(S SN D B G e I S / /
A) B ! St 1@ f3(t) = 4 @ f3()
), cg @ éD : @ é ¢y e Stated differently:

my & my =mz®&my = fi1(t) & f1(t')
h®eg=c1®cy = f3(t)® f3(t)
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Improved Attack: Rationale

o Stated differently:

ft) e h(t)

ch®es=c1®cy = f3(t) D f3(t')

/ /
2:m3@m4_

midm

C1

€3

mi

\\\\\\\\

O— Z —D

ms




Improved Attack: Rationale

mi

ms

o (| o (s | o
AL A A g
fi(t) f2(t) | f3(t)
i3 (| L) i3
T J f T
fi ') f2(t') f3(t')
S R T W N P
= =

el

€3

o Stated differently:
my @ my =m3®my = fi(t) & fi(t)
ch®es=c1®cy = f3(t) D f3(t')

e But D does not know fi(t) & f1(t)



Improved Attack: Rationale

o Stated differently:
my @ my =mg®my = fi(t)D fi(t)

/ / /
fary P m C @ C3 = C @ Cy = J= t EB R t
my u( @ u( T @ \JT, c1 2 3 1 4 fd( ) fd( )
flft) — fQE” : — f‘*ft) e But D does not know fi(t) & f1(t)
s @ P @ ! 172 @ @ e Choose the m;'s and mg's such that
: for any d, there are 2" quadruples
- o @ P @ & & such that m; @ mh =mg@m) =d
i ro ! (costs 23"/* queries for both ¢ and t')
A®) R) | )
SV S ey T S N Y S




Improved Attack: Rationale

o Stated differently:
my @ my =mg®my = fi(t)D fi(t)

/ o s Y
e A A s 0 s e
flft) — fQE” : — f‘*ft) e But D does not know fi(t) & f1(t)
s @ P @ ! 172 @ @ e Choose the m;'s and mg's such that
: for any d, there are 2" quadruples
/ PR B P I I (Y IS S ' such that m; @ mi =ms®dm/) =d
my P1 E—> P2 D Cy 1 2 3 4
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A®) R) | )
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Improved Attack: Rationale

o Stated differently:
my @ my =mg®my = fi(t)D fi(t)

/ _ / /
e A A s 0 s e
A R0 F3(®) /
Ny e e ! ) e But D does not know fi(t) & fi(t')
’ ¥ Y Yo ) v ’ e Choose the m;'s and m!'s such that
: for any d, there are 2" quadruples
m, (%\ @ \JT@\ : @ @Tﬁ I such tha;;l}z;ll () m,2 =ms3®D mil = d/
) Lo ) (costs 2 queries for both ¢ and t')
A R | Fo()
o é o) é@ ; ) é . e E[solutions to ¢, ® c3 = ¢1 @ ¢]?
‘ J = ‘ 2if d= fi(t)® f1(t'), 1 otherwise

o Extend the number of queries by
factor n/2 to eliminate false positives
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Improved Attack: Verification

Theoretical Verification

e Assuming n > 27, the success probability of D is at least 1/2
e Analysis consists of properly bounding Pr [DEk = 1} and Pr [D% = 1]
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Improved Attack: Verification

Theoretical Verification

e Assuming n > 27, the success probability of D is at least 1/2
e Analysis consists of properly bounding Pr [DEk = 1} and Pr [D% = 1]

Experimental Verification
e Small-scale implementation for n = 16, 20, 24

e N is the number of hits ¢y, ® c3 =1 ® ¢

Ny in real world for d = Ny in ideal world for d =
n n'/? q Al @ AF) random  fi(t) ® fi(t) random
16 2 4.212 256.593750 129.781250 127.093750 127.375000
20 2 4.1 265.531250 133.312500 125.625000 128.750000
24 2 4.218 246.750000 131.375000 120.625000 129.875000
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Improved Security Bound

Cascaded LRW5:

hl(t) h1 (t) &) hg(t) hg(t)

B e N U e B

E}, are SPRP-secure

h; are 4-wise independent XOR-universal hash

No tweak is queried more than 2/ times
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Improved Security Bound

Cascaded LRW5:

h1 (t) h1 (t) @ ho (t) ho (t)

m %GL—» Ekl GL EkQ G C

E}, are SPRP-secure

h; are 4-wise independent XOR-universal hash

No tweak is queried more than 2/ times

Cascaded LRW, is secure up to ~ 2%/* evaluations

14 /20



Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

e Replace Ej, by random permutations p;

EB ha(t) ha(t)

AT
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Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

e Replace Ej, by random permutations p;

h1 (t) h1 (t) @ ho (t) ho (t)

B el e B
-

Ay Ay

Step 2: Patarin’s H-Coefficient Technique

e Main task: given ¢ evaluations of cascaded LRW5,
derive lower bound on #{(p1,p2)}

e Lower bound should hold for the “most likely” transcripts

15/20



Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

me h(t)
m(® () © a0 et I
m 1 C:W ! C;W { ¢ = ha(t) @ ha(t)
— ) J
c® ha(t)
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m @ hi(t)
ha(t) ha(t) @ ha(t) ha(t) I
rﬁw (—T { <~ hi(t) ® ha(t)
m : p1 ! p2 : c J
c® ho (t)

e 2 unknowns: X := p;(m @ hy(t)) and YV := py ' (c @ ha(t))
e 1 equation: X ®Y = hy(t) ® ha(t)
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m @ hi(t)
ha(t) ha(t) @ ha(t) ha(t) I
rﬁ} (—T { <~ hi(t) @ ha(t)
m f P f p2 f c J
c® ho (t)

e 2 unknowns: X := p;(m @ hy(t)) and YV := py ' (c @ ha(t))
e 1 equation: X ®Y = hy(t) ® ha(t)
o Lower bound on #{(p1,p2)} related to the number of choices (X,Y")

16 /20



Improved

Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (AII Tuples)

mo = M3

/\ notation:
F(t2) f(ts) falts) fz(t7 e

/N / VAR

m; P hl(ti)
¢ @ ha(t;)
hi(t;) @ ha(ts)

Ce = C7

e 11 unknowns for p1, ro unknowns for ps, and ¢ equations
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Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (AII Tuples)

m1 mo = M3

( /\ notation:
f(tl) (t2 (td t4 fQ t(,) fz(t7 7?2‘ =m; ® hl(tl)

i = ¢ ®ha(t;)

/ \ / f(ts) \/ F(ts) = ha(ti) @ ha(t:)

Cc1 Ce = C7

e 11 unknowns for p1, ro unknowns for ps, and ¢ equations
e Two potential problems:

(i) Graph contains circle
(i) Graph contains path of even length whose labels sum to 0 (degeneracy)
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Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (AII Tuples)

m1 mo = M3

( /\ notation:
f(t1) ft2) f(ts) f(ta) | fa(te) fz(t7 M = 1 ® ha(t:)

¢ = c; @ ha(t;)

/ \ / f(ts) \/ F(ts) = ha(ti) @ ha(t:)

Cc1 Ce = C7

e 11 unknowns for p1, ro unknowns for ps, and ¢ equations
e Two potential problems:

(i) Graph contains circle
(i) Graph contains path of even length whose labels sum to 0 (degeneracy)

e If neither of these occurs: one “free choice” for each tree

17 /20



Improved Security Bound: Proof Idea (4)

Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1,p2) is at least

m2nl (L dg
ong \ " on
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Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1,p2) is at least

m2nl (L dg
ong \ " on

o Lower bound on #{(p1,p2)} sufficient to derive 23"/ security
(some technicality involved)

e Violation of (i), (ii), or (iii) with probability at most O(q*/2")
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Improved Security Bound: Proof Idea (4)

Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1,p2) is at least

m2nl (L dg
ong \ " on

o Lower bound on #{(p1,p2)} sufficient to derive 23"/ security
(some technicality involved)

e Violation of (i), (ii), or (iii) with probability at most O(q*/2")
e We apply mirror theory up to the first iteration

18/20



Improved Security Bound: Bottlenecks

Excessively Large Tree
e Badness probability relies on

o tweak limitation
e 4-wise independence of hash functions

Mirror Theory
e Mirror theory developed for comparison with PRF, not with PRP

e Problem mitigated due to tweak limitation

19/20



Conclusion

Cascaded LRW; (or LRW;[2])
e Generic attack in complexity 3n/4
e 3n/4 security bound, but conditional
e Security bound carries over to LRW»[3]-LRW>[5]
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Conclusion

Cascaded LRW; (or LRW;[2])
e Generic attack in complexity 3n/4
e 3n/4 security bound, but conditional
e Security bound carries over to LRW»[3]-LRW>[5]

Challenges
e Tightness of cascaded LRW, without side conditions?
e Longer cascades of LRW;[p| and TEM[p]?

Thank you for your attention!
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SUPPORTING SLIDES



Updated State of the Art on LRW,[p]

n/2 2n/3 3n/4 5n‘/6 n
LRW,[1] |
LRW,[2]
LRW, 3]
LRW, 4]
LRW,[5]
LRW, 6]
LRW,[7]
LRW,|8]
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LRW,|10]
LRW,][11]
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Updated State of the Art on LRW,[p]

improved bound improved attack
(conditionally) (generalized construction)
n/2 2n/3 3n/4 n/6 n

LRW2[1] ‘ ! ! /\1 / | !

LRW;[2]

LRW;[3]

LRW;[4]

LRW,[5]

LRW. 6] ~

LRW;[7] carries over to

LRW;[8] LRW[3]-LRW; 5]

LRW,[9]

LRW,[10]

LRW;[11]
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H-Coefficient Technique

e Patarin [Pat91,Pat08]
e Popularized by Chen and Steinberger [CS14]
e Similar to “Strong Interpolation Technique” [Ber05]
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H-Coefficient Technique

e Patarin [Pat91,Pat08]
e Popularized by Chen and Steinberger [CS14]
e Similar to “Strong Interpolation Technique” [Ber05]

O

1 P

T~

distinguisher D

e Basic idea:

e Each conversation defines a transcript 7
o O ~ P for most of the transcripts
e Remaining transcripts occur with small probability

23/20



H-Coefficient Technique

e D is computationally unbounded and deterministic

e Each conversation defines a transcript 7
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H-Coefficient Technique

e D is computationally unbounded and deterministic
e Each conversation defines a transcript 7

e Consider good and bad transcripts
Lemma
Let € > 0 be such that for all good transcripts 7:

Pr[O gives 7] Sl
Pr [P gives 7]

Then, Ap(O; P) < e+ Pr [bad transcript for P]

24 /20



H-Coefficient Technique

e D is computationally unbounded and deterministic
e Each conversation defines a transcript 7

e Consider good and bad transcripts
Lemma
Let € > 0 be such that for all good transcripts 7:

Pr[O gives 7] Sl
Pr [P gives 7]

Then, Ap(O; P) < e+ Pr [bad transcript for P]

Trade-off: define bad transcripts smartly!

24 /20



Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,...,P.}

e Consider a system of ¢ equations of the form:

Pa1 S?) Pb1 = )\1
Po, ® By, = Ao
Paq & qu = )\q
for some surjection ¢ : {a1,b1,...,a4,04} — {1,...,7}
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Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,...,P.}

e Consider a system of ¢ equations of the form:

Pa1 S?) Pb1 = )\1
Po, ® By, = Ao
Paq & qu = )\q
for some surjection ¢ : {a1,b1,...,a4,04} — {1,...,7}

Goal

e Lower bound on the number of solutions to P
such that P, # P, for all distinct a,b € {1,...,r}



Mirror Theory

Patarin’'s Result

e Extremely powerful lower bound
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Mirror Theory

Patarin’'s Result

e Extremely powerful lower bound

e Has remained rather unknown since introduction (2003)

Authors

Publication

Application  Mirror Bound

Patarin
Patarin
Patarin

CRYPTO 2003
CRYPTO 2004
ICISC 2005

Feistel Suboptimal
Feistel
Feistel Optimal in O(+)
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Mirror Theory

System of Equations
e r distinct unknowns P = {Py,..., P}
e System of equations P,, ® P, = \;

e Surjection ¢ : {a1,b1,...,aq,bq} — {1,...

Graph Based View

Py,
A
/ P,
Py =P, A Py
Ao
X
A4
Py, =Poy =Dy, ! Py, =Py,
% Fbe
Py,
e
R
P,,
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Mirror Theory: Toy Example 1

e System of equations:
Pa S Pb = )\1
Pb @ Pc = )\2

A1

P,

S
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Pb@PC:)\Z )\2

F.
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Mirror Theory: Toy Example 2
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Pe® Py =X
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Mirror Theory: Toy Example 2

e System of equations: P, M P,
P, ® Pb = )\l Ay
Pc D Pd = )\2 P, Py,

If A1 =00rX2=0
e Contradiction: P, = P, or P, = P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P)
e For P, and P; we require

° PC#PLLvPb
L4 Pd:)\QGBPc?éPaan

o At least 2" — 4 choices for P, (which fixes Py)
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Mirror Theory: Toy Example 3

e System of equations: Py & Py
Pa ) Pb == )\1 \ /
Pb &b PC = )\2 A3 A2
P.®P,= )3 P,

e Assume \; # 0 and \; # A
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Mirror Theory: Toy Example 3

e System of equations: P, & P,
Pa ) Pb == )\1 \ /
Pb &b PC = )\2 A3 A2
P.®P,= )3 P,

e Assume \; # 0 and \; # A

A BA2BA3#0
e Contradiction: equations sum to 0 = A1 & Ao B A3

e Scheme contains a circle
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Mirror Theory: Toy Example 3

e System of equations: P, P,
Pa @ Pb = )\1 \ /
P®FP. =X\ A3 A2
Pc 5> Pa = )\3 P

e Assume \; # 0 and \; # A

A1 DA B A3#0
e Contradiction: equations sum to 0 = A1 & Ao B A3
e Scheme contains a circle

A1 DA DA3=0
e One redundant equation, no contradiction

e Still counted as circle
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Mirror Theory: Two Problematic

Circle

Py, =P, N

A —~
by, =P,

Pa1 :Pbs Az

x Fos = Fau

/M

Bm = Pa5

Cases

Degeneracy

A
P, =Py, E— P

A2 MO @A
3
Py, =Dy, Py, =P,
Pb7 = Pbg
Ay X
Pb4 = Lag )\5
\ A6 bej = Pb7
As
Py, = Py,
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Mirror Theory: Main Result

System of Equations
e 1 distinct unknowns P = {P;,..., P}
e System of equations P,, & Py, = \;
e Surjection ¢ : {a1,b1,...,aq4,bq} = {1,...,7}

Main Result

If the system of equations is circle-free and non-degenerate, the number of
solutions to P such that P, # P, for all distinct a,b € {1,...,r} is at least

(2")r
214

provided the maximum tree size ¢ satisfies (€ —1)2-r < 2"/67



Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}
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33/20



Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}

General Setting

e Each tuple corresponds to x; — p(0||z;) =: P,, and
xi = p(1|x;) =: P,

33/20



Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}

General Setting
e Each tuple corresponds to x; — p(0||z;) =: P,, and

xi = p(1|x;) =: P,
e System of ¢ equations P, & Py, = y;

33/20



Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}

General Setting

e Each tuple corresponds to x; — p(0||z;) =: P,, and
xi = p(1|x;) =: P,
e System of ¢ equations P, & Py, = y;

e Inputs to p are all distinct: 2¢ unknowns
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Mirror Theory Applied to XoP

IS b, Py,
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

e Maximum tree size 2
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

Maximum tree size 2

If 2¢ < 27/67: at least (227;)5‘1 solutions to unknowns
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]

>1-
Pr|f gives 7] — c

Then, Adv2(g) < & + Pr[bad transcript for f]
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]
Pr[f gives 7]

>1—c

Then, Adv2(g) < & + Pr[bad transcript for f]

e Bad transcript: if y; = 0 for some 4
e Pr [bad transcript for f] = ¢/2"
e For any good transcript:
o Pr[XoP gives 7] > Z)2a . 1 } c—0

24 (27)24
o Prlf gives 7] = L.

AdV?(fP(Q) <q/2"
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New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory

Mennink, Neves, CRYPTO 2017

e Refurbish and modernize mirror theory

e Prove optimal PRF security of:

E(WC)DM [CS16] EDMD
e Lpi v v {n -y
h(m) ----------
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