Provable Security of BLAKE with Non-Ideal Compression Function

Elena Andreeva, Atul Luykx, and Bart Mennink (KU Leuven)

Selected Areas in Cryptography Windsor, Canada August 17, 2012

BLAKE

$$\mathcal{H}: \{0,1\}^{n/2} \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(s,M) = h$

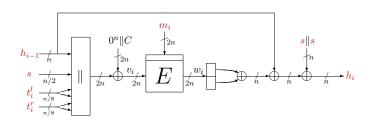
- SHA-3 finalist
- HAIFA design
- m_1, \ldots, m_k padded message blocks of 2n bits
- t_1, \ldots, t_k HAIFA-counter blocks of n/4 bits



BLAKE

$$f: \{0,1\}^n \times \{0,1\}^{n/2} \times \{0,1\}^{2n} \times \{0,1\}^{n/4} \to \{0,1\}^n$$
$$f(h_{i-1},s,m_i,t_i) = h_i$$

- Local wide-pipe design
- f uses $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$



State of the Art

$pre\ f$	$\sec f$	$\sec f \cos f$		f col f pre ${\cal H}$ sec ${\cal H}$		col ${\cal H}$ indiff ${\cal H}$	
			2^n	2^n	$2^{n/2}$	$2^{n/2}$	
			f $ideal$	f $ideal$	f $ideal$	f $ideal$	

- BLAKE follows HAIFA design:
 - \rightarrow pre/sec/col/indiff security for f ideal

State of the Art

$pre\ f$	$\sec f$	sec f col f pre ${\cal H}$		sec ${\cal H}$	col ${\cal H}$	indiff ${\cal H}$
			2^n	2^n	$2^{n/2}$	$2^{n/2}$
			f $ideal$	f $ideal$	f $ideal$	f $ideal$

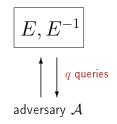
- BLAKE follows HAIFA design:
 - ightarrow pre/sec/col/indiff security for f ideal
- f lacks security analysis

State of the Art

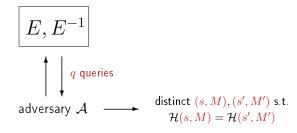
$pre\ f$	$\sec f \cos f$		pre ${\cal H}$	pre ${\cal H}$ sec ${\cal H}$		indiff ${\cal H}$
			2^n	2^n	$2^{n/2}$	$2^{n/2}$
			f $ideal$	f $ideal$	f $ideal$	f $ideal$

- BLAKE follows HAIFA design:
 - \rightarrow pre/sec/col/indiff security for f ideal
- f lacks security analysis

Analysis of BLAKE's ${\cal H}$ and f with underlying E ideal

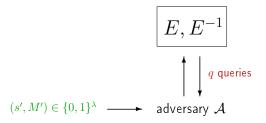


- Ideal cipher model: $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$
- ullet ${\cal A}$ has query access to E



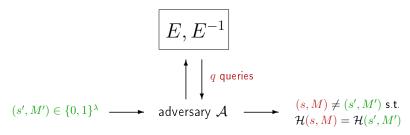
- Ideal cipher model: $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$
- ullet ${\cal A}$ has query access to E

$$\mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}(q) = \max_{\mathcal{A}} \,\, \mathsf{success} \,\, \mathsf{probability} \,\, \mathcal{A}$$



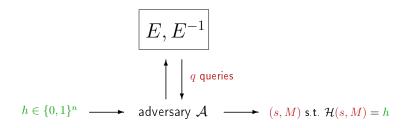
- Ideal cipher model: $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$
- ullet ${\cal A}$ has query access to E

$$\mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}(q) = \max_{\mathcal{A}} \,\, \mathsf{success} \,\, \mathsf{probability} \,\, \mathcal{A}$$



- Ideal cipher model: $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$
- ullet ${\cal A}$ has query access to E

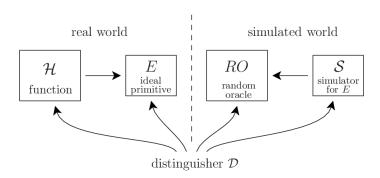
$$\begin{split} \mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}(q) &= \max_{\mathcal{A}} \text{ success probability } \mathcal{A} \\ \mathbf{Adv}^{\mathrm{esec}[\lambda]}_{\mathcal{H}}(q) &= \max_{\mathcal{A}} \max_{(s',M') \in \{0,1\}^{\lambda}} \text{ success probability } \mathcal{A} \end{split}$$



- Ideal cipher model: $E: \{0,1\}^{2n} \times \{0,1\}^{2n} \to \{0,1\}^{2n}$
- ullet ${\cal A}$ has query access to E

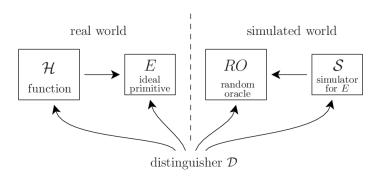
$$\begin{split} \mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}(q) &= \max_{\mathcal{A}} \text{ success probability } \mathcal{A} \\ \mathbf{Adv}^{\mathrm{esec}[\lambda]}_{\mathcal{H}}(q) &= \max_{\mathcal{A}} \max_{(s',M') \in \{0,1\}^{\lambda}} \text{ success probability } \mathcal{A} \\ \mathbf{Adv}^{\mathrm{epre}}_{\mathcal{H}}(q) &= \max_{\mathcal{A}} \max_{b \in \{0,1\}^{n}} \text{ success probability } \mathcal{A} \end{split}$$

Ideal Model Security: Indifferentiability

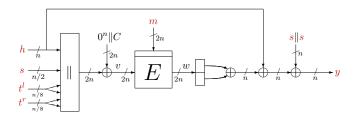


- ullet Indifferentiability of ${\mathcal H}$ from a random oracle
- \mathcal{H}^E is indifferentiable from RO if \exists simulator S such that (\mathcal{H},E) and (RO,\mathcal{S}) indistinguishable

Ideal Model Security: Indifferentiability

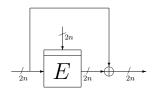


- ullet Indifferentiability of ${\cal H}$ from a random oracle
- \mathcal{H}^E is indifferentiable from RO if \exists simulator S such that (\mathcal{H},E) and (RO,\mathcal{S}) indistinguishable
- ullet Extension of indistinguishability: ${\cal D}$ may know structure of ${\cal H}$



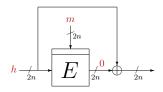
f differentiable from RO in $2^{n/4}$ queries

Differentiability: construct a distinguisher that tricks any simulator



f differentiable from RO in $2^{n/4}$ queries

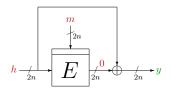
- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries



f differentiable from RO in $2^{n/4}$ queries

- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries

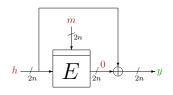
Real world
\mathcal{D} queries $E^{-1}(m,0) \to h$



f differentiable from RO in $2^{n/4}$ queries

- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries

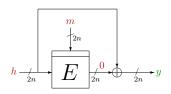
Real world \mathcal{D} queries $E^{-1}(m,0) \to h$ \mathcal{D} queries $DM(h,m) \to y$



f differentiable from RO in $2^{n/4}$ queries

- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries

Real world $\mathcal{D} \text{ queries } E^{-1}(m,0) \to h \\ \mathcal{D} \text{ queries } DM(h,m) \to y \\ h = y \text{ with probability } 1$



f differentiable from RO in $2^{n/4}$ queries

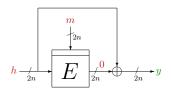
- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries

Real world
\mathcal{D} queries $E^{-1}(\mathbf{m},0) o \mathbf{h}$
\mathcal{D} queries $DM(\mathbf{h},\mathbf{m}) \to y$
h = y with probability 1

1.1

П

Simulated world
${\mathcal D}$ queries ${\mathcal S}^{-1}({\color{red} m},{\color{black} 0}) ightarrow {\color{black} h}$
\mathcal{D} queries $RO(\pmb{h}, \pmb{m}) \to y$



f differentiable from RO in $2^{n/4}$ queries

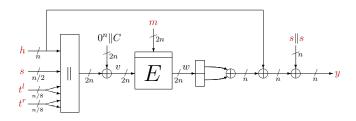
- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries

Real world

$$\mathcal{D}$$
 queries $E^{-1}(m,0) \to h$
 \mathcal{D} queries $DM(h,m) \to y$
 $h = y$ with probability 1

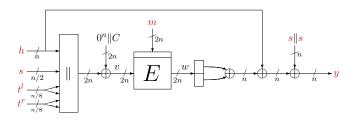
Simulated world

$$\mathcal{D}$$
 queries $\mathcal{S}^{-1}(m,0) \to h$
 \mathcal{D} queries $RO(h,m) \to y$
 $h = y$ with probability $O(1/2^{2n})$



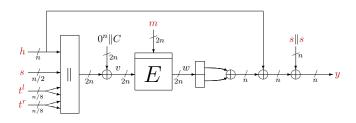
f differentiable from RO in $2^{n/4}$ queries

- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries



f differentiable from RO in $2^{n/4}$ queries

- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries
- BLAKE's f: duplicate counter prevents this attack
 - ullet \mathcal{S}^{-1} -responses non-compliant with duplicate counter are useless to \mathcal{D}
 - After $2^{n/4}$ queries, this gets suspicious



f differentiable from RO in $2^{n/4}$ queries

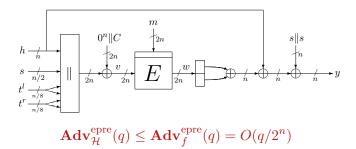
- Differentiability: construct a distinguisher that tricks any simulator
- Davies-Meyer differentiable in 2 queries
- BLAKE's f: duplicate counter prevents this attack
 - ullet \mathcal{S}^{-1} -responses non-compliant with duplicate counter are useless to $\mathcal D$
 - After $2^{n/4}$ queries, this gets suspicious
- Invalidates assumption "f ideal"

State of the Art, cntd.

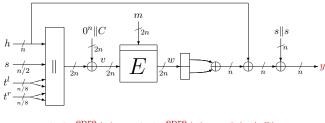
$pre\; f$	$\sec f$	$\operatorname{col}\ f$	pre ${\cal H}$	sec ${\cal H}$	col ${\cal H}$	indiff ${\cal H}$
			2^n	2^n	$2^{n/2}$	$2^{n/2}$
			f $ideal$	f $ideal$	f $ideal$	f $ideal$

State of the Art, cntd.

$pre\ f$	$\sec f$	$\operatorname{col}\ f$	pre ${\cal H}$	sec ${\cal H}$	col ${\cal H}$	indiff ${\cal H}$		
			2^n	2^n	$2^{n/2}$	$2^{n/2}$		
			f ideal	f $ideal$	f $ideal$	f ideal		
	igg(Differentiability attack on f							
$pre\ f$	$\sec f$	$col\ f$	pre ${\cal H}$	sec ${\cal H}$	col ${\cal H}$	indiff ${\cal H}$		

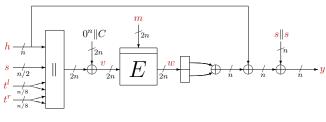


• BLAKE preserves "epre"



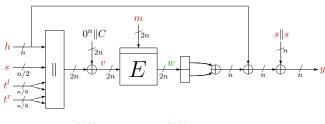
$$\mathbf{Adv}_{\mathcal{H}}^{\text{epre}}(q) \le \mathbf{Adv}_f^{\text{epre}}(q) = O(q/2^n)$$

- BLAKE preserves "epre"
- Let $y \in \{0,1\}^n$ be target image
- ullet ${\cal A}$ makes q queries



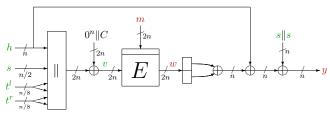
$$\mathbf{Adv}_{\mathcal{H}}^{\text{epre}}(q) \le \mathbf{Adv}_{f}^{\text{epre}}(q) = O(q/2^{n})$$

- BLAKE preserves "epre"
- Let $y \in \{0,1\}^n$ be target image
- \mathcal{A} makes q queries
- Any E-query (m,v,w): preimage if $w^l \oplus w^r \oplus h \oplus (s\|s) = y$



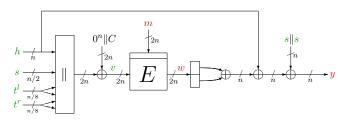
$$\mathbf{Adv}_{\mathcal{H}}^{\text{epre}}(q) \le \mathbf{Adv}_{f}^{\text{epre}}(q) = O(q/2^{n})$$

- BLAKE preserves "epre"
- Let $y \in \{0,1\}^n$ be target image
- ${\cal A}$ makes q queries
- Any *E*-query (m, v, w): preimage if $w^l \oplus w^r \oplus h \oplus (s||s) = y$
 - Forward query: with probability $O(1/2^n)$



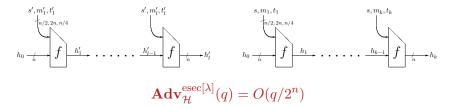
$$\mathbf{Adv}_{\mathcal{H}}^{\text{epre}}(q) \le \mathbf{Adv}_{f}^{\text{epre}}(q) = O(q/2^{n})$$

- BLAKE preserves "epre"
- Let $y \in \{0,1\}^n$ be target image
- \mathcal{A} makes q queries
- Any *E*-query (m, v, w): preimage if $w^l \oplus w^r \oplus h \oplus (s||s) = y$
 - Forward query: with probability $O(1/2^n)$
 - Inverse query: with probability $O(1/2^n)$

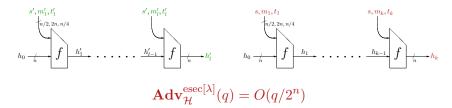


$$\mathbf{Adv}_{\mathcal{H}}^{\text{epre}}(q) \le \mathbf{Adv}_{f}^{\text{epre}}(q) = O(q/2^n)$$

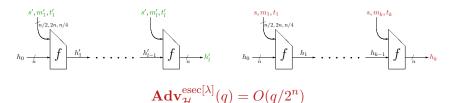
- BLAKE preserves "epre"
- Let $y \in \{0,1\}^n$ be target image
- ullet ${\cal A}$ makes q queries
- Any E-query (m, v, w): preimage if $w^l \oplus w^r \oplus h \oplus (s || s) = y$
 - Forward query: with probability $O(1/2^n)$
 - Inverse query: with probability $O(1/2^n)$
- Similarly, $\mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}(q) \leq \mathbf{Adv}^{\mathrm{col}}_f(q) = O(q^2/2^n)$



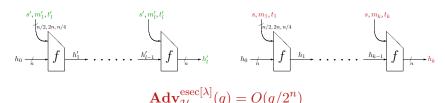
 $\bullet \text{ "esec" not preserved: } \mathbf{Adv}_{\mathcal{H}}^{\mathrm{esec}[\lambda]}(q) \not\leq \mathbf{Adv}_f^{\mathrm{esec}[\lambda]}(q)!$



- "esec" not preserved: $\mathbf{Adv}^{\mathrm{esec}[\lambda]}_{\mathcal{H}}(q) \not\leq \mathbf{Adv}^{\mathrm{esec}[\lambda]}_f(q)!$
- Let (s', M') be target preimage and (s, M) response by $\mathcal A$

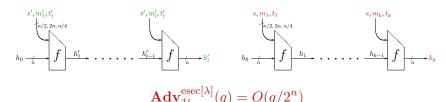


- "esec" not preserved: $\mathbf{Adv}^{\mathrm{esec}[\lambda]}_{\mathcal{H}}(q) \not\leq \mathbf{Adv}^{\mathrm{esec}[\lambda]}_f(q)!$
- ullet Let (s',M') be target preimage and (s,M) response by ${\mathcal A}$
- $\exists f$ -coll $f(h_{i-1}, s, m_i, t_i) \in \{h'_1, \dots, h'_l\}$
 - \rightarrow Any E-query: f-coll with probability $O(l/2^n)$



• "esec" not preserved:
$$\mathbf{Adv}_{\mathcal{U}}^{\operatorname{esec}[\lambda]}(q) \not\leq \mathbf{Adv}_{f}^{\operatorname{esec}[\lambda]}(q)!$$

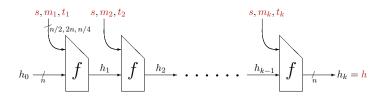
- Let (s', M') be target preimage and (s, M) response by $\mathcal A$
- $\exists f$ -coll $f(h_{i-1}, s, m_i, t_i) \in \{h'_1, \dots, h'_l\}$ \rightarrow Any E-query: f-coll with probability $O(l/2^n)$
- BLAKE achieves better second preimage resistance!
 - ightarrow t_i fixes particular target state value from $\{h'_1,\ldots,h'_l\}$



• "esec" not preserved:
$$\mathbf{Adv}_{\mathcal{H}}^{\operatorname{esec}[\lambda]}(q) \not\leq \mathbf{Adv}_{f}^{\operatorname{esec}[\lambda]}(q)!$$

- Let (s', M') be target preimage and (s, M) response by \mathcal{A}
- $\exists f$ -coll $f(h_{i-1}, s, m_i, t_i) \in \{h'_1, \dots, h'_l\}$ $\rightarrow \text{Any } E$ -query: f-coll with probability $O(l/2^n)$
- BLAKE achieves better second preimage resistance!
 - ightarrow t_i fixes particular target state value from $\{h'_1,\ldots,h'_l\}$
 - ightarrow Any E-query: f-coll with probability $O(1/2^n)$

Indifferentiability of BLAKE



$$\mathbf{Adv}_{\mathcal{H}}^{\text{indiff}}(\mathcal{D}) = O((Kq)^2/2^n)$$

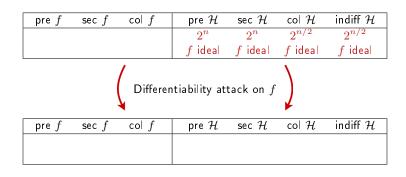
(where \mathcal{D} makes at most q queries of length at most K blocks)

- We restore old indifferentiability bound of BLAKE in ICM
- High-level proof idea
 - S maintains graph: edges correspond to f-evaluations
 - Complete paths should be in correspondence with RO
- Technical details in paper

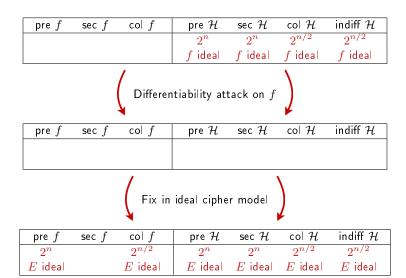
Conclusions

$pre\ f$	$\sec f$	$\operatorname{col}\ f$	pre ${\cal H}$	sec ${\cal H}$	col ${\cal H}$	indiff ${\cal H}$
			2^n	2^n	$2^{n/2}$	$2^{n/2}$
			f $ideal$	f $ideal$	f $ideal$	f $ideal$

Conclusions



Conclusions



Comparison of SHA-3 Finalists [AMPS12]

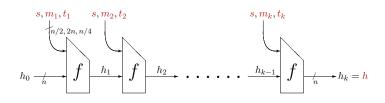
	l	m	pre	sec	col	indiff	assumption
BLAKE-256	256	512	256	256	128	128	E ideal
Grøst l-256	512	512	256	256-L	128	128	P,Q ideal
JH-256	1024	512	256	256	128	256	P $ideal$
Keccak-256	1600	1088	256	256	128	256	P $ideal$
Skein-256	512	512	256	256	128	256	E $ideal$
NIST's requirements			256	256– <i>L</i>	128	_	

	l	m	pre	sec	col	indiff	assumption
BLAKE-512	512	1024	512	512	256	256	E $ideal$
Grøst ∣-512	1024	1024	512	512– L	256	256	P,Q ideal
JH-512	1024	512	256	256	256	256	P $ideal$
Keccak-512	1600	576	512	512	256	512	P $idea$
Skein-512	512	512	512	512	256	256	E $ideal$
NIST's requirements			512	512– L	256	_	

Supporting Slides

SUPPORTING SLIDES

Indifferentiability of BLAKE



$$\mathbf{Adv}_{\mathcal{H}}^{\text{indiff}}(\mathcal{D}) = O((Kq)^2/2^n)$$

(where \mathcal{D} makes at most q queries of length at most K blocks)

- Indifferentiability: construct a simulator that tricks any distinguisher
- ullet ${\cal S}$ maintains graph: edges correspond to f-evaluations
 - Any S-query defines at most one edge $h \xrightarrow{s||m||t} h'$
- Complete path: $h_0 \xrightarrow{s||m_1||t_1} h_1 \cdots \xrightarrow{s||m_k||t_k} h_k$ for correctly padded (m_1, \ldots, m_k) , (t_1, \ldots, t_k)

Indifferentiability of BLAKE

```
Forward Query \mathcal{S}(m,v)
```

 $\begin{array}{l} \textbf{if} \ \ \text{new query creates complete path } \textbf{then} \\ \text{(new query likely results in at most 1 complete path)} \\ \text{generate } w \ \text{in accordance with } RO \\ \textbf{else} \\ \text{generate } w \ \text{uniformly at random} \\ \textbf{end if} \end{array}$

Inverse Query $S^{-1}(m,w)$

add new edge to graph

(new query likely results in no complete path) generate v uniformly at random add new edge to graph