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Merkle-Damgard Hash Function Design (MD):

Introduction
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Introduction

Hash Function Security Requirements

Preimage resistance
Second preimage resistance
Collision resistance
M H P Multicollision resistance
n Security against length extension attack
Chosen-target-forced-prefix preimage resistance

Chosen-target-forced-prefix (CTFP) preimage resistance

(security against herding attack)
@ Choose y, given P, find R such that H(P||R) =y
o Applications: predicting elections, sports games, etc.
o Ideally, CTFP attack requires 2" work
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attack L=|M)| complexity (f-calls)
herding O(n) blocks V/n22n/3

elongated herding

r 2n/3 /or/3
(0<r<n/2) O(n + 27) blocks /n22n/3 /2
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Our Contributions

Chosen-target-forced-midfix (CTFM) preimage resistance

@ Formalize and generalize security against herding

@ Notion particularly covers all known attacks

CTFM security bound for MD

@ We formally prove security of MD

@ Analysis directly applies to other hash functions

Existence of optimally CTFM secure hash functions?

o No optimally secure narrow-pipe design known
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p: length of forced midfix (bits)
L: max. length of forged preimage (blocks)

Definition

@ H using ideal compression function f : {0,1}"*™ — {0,1}"

@ Adversary A query access to f

%y
AT P& fo,11p
— &R

o A wins if #/(g(P,R)) =y and |mg(g)| < 2t™

° Adv%fm(q): success probability of any adversary making g queries

In remainder, g(P, R1||R2) = R1||P||R2, where Ry, R, of arbitrary length
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Chosen-Target-Forced-Midfix (CTFM) Security

Herding attack for MD P =
g(P7 R2) = P||R2 !
@ Ry is empty string v s T ... .. >
@ P is prefix
R, p
Herding attack for zipper iv . fH f—> ..... —> f
g(P,R1) = Ri||P — R o
@ R, is empty string ﬁ—lx d

@ P is suffix
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L: max. length of forged preimage (blocks)

Theorem

For any integral t > 0:

AdviT(q) <

(L=1)tg  m2PP/mg <q2e>t ¢

2 2pP t2n Dam
——
succ | ﬁE,’ Eo E1 E2

o t: tradeoff between first and third term
@ p dominates second term: Eq covers event “A guesses P’

@ [ dominates first term: larger L gives higher success probability
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Implications

Let p be “large enough” (see paper). For any € > 0:

lim Advii (2272/11/2 . 27) = 0

@ Implies (asymptotic) optimality of
e Original attack of Kelsey & Kohno
e Almost all attacks of Gauravaram et al. and Andreeva et al.
@ Analysis can easily be generalized to other hash functions, such as

MD with prefix-free or suffix-free padding
Enveloped MD

MD with permutation

HAIFA

10/15



Proof Idea

@ Attack consists of two phases:

o First phase: A queries f and decides on y
o A receives random challenge P
o Second phase: A queries f and outputs g, R s.t. H'(g(P,R)) =y

e Graph: f(hj_1, M;) = h; corresponds to arc h;_; Mis p,

¢

@ “x at distance k from y”: there exists a path x — y of length k
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@ Attack consists of two phases:

o First phase: A queries f and decides on y
o A receives random challenge P
o Second phase: A queries f and outputs g, R s.t. H'(g(P,R)) =y

e Graph: f(hj_1, M;) = h; corresponds to arc h;_; Mi, h;
@ “x at distance k from y”: there exists a path x — y of length k

A wins if:
Eo He guesses P in the first phase

E; For some node y and k € {0,...,L}: graph contains more
than t elements at distance k from y

E, Graph contains 3-way collision
succ | —=E; Adversary finds CTFM preimage given —E;
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Optimally CTFM Secure Hash Functions

Wide-pipe

o Wide-piping renders optimal CTFM security (trivial)

Narrow-pipe

@ No optimally CTFM secure narrow-pipe hash function known

@ We consider two possible directions:

o Salting
o Message modification: MD with more sophisticated padding
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H(S,M) =y
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Optimally CTFM Secure Hash Functions

Salted-Chosen-Target-Forced-Midfix (SCTFM) Security

71 :{0,1}° x {0,1}* — {0,1}"

Variant 1: Variant 2:
— y,S —_—y
ATl P01 ATl P& o1y
— g,R — g,R,S
Variant 3: Variant 4:
—— S&{o0,1)¢ —y
A | Ty Af | —— PE{o1yr
—— P& {0,1)P —— S&{o,1)¢
— g, R — g,R

Variant 1, 2, 3: A knows salt, so Adv?fttfm(A) = Adv%_tlfm(A)

Variant 4 : A commits to y without knowing hash function instance
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Optimally CTFM Secure Hash Functions

Message Modification

@ Herding attack: edges in diamond added independently of each other

@ ldea: create dependence among message blocks

v

M,

mL

Mg M]@Mg

@ We describe attack for this and similar hash functions
e Same complexity as original herding attack (up to constant)

o |

/

/

e Optimal due to our security bound
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Conclusions

Conclusions

Chosen-target-forced-midfix preimage resistance

@ Security notion

@ Introduced proof methodology

o Optimality of herding attack

e Optimal (2") security???
@ Open problem
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Detailed Proof Idea (1)

Eo | 7E»: A guesses P
@ By —Ej: graph contains at most m2/P/™lq strings of length p
@ Any such path equals P with probability at most 1/2P

m2le/ml g
op

E; | -E2: > t elements at distance k from y

@ By —E5: only 2-way collisions

PI’(EQ | —|E2) S

@ One can show: graph must contain t 2-way collisions

ree 160 < (7) ()" < (&)
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Detailed Proof Idea (2)

Ey: 3-way collision

Pr (E2) < —
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Detailed Proof Idea (2)

Ey: 3-way collision

Pr (E2) < —

succ | —=E;: CTFM preimage

@ Forged message of length at most L blocks
@ A needs at least one query to hit any of the L — 1 closest layers to y
e By —E;: at most t nodes per layer

(L—1)tq
2n

Pr (SUCA(QQ) ’ —Eg A —|E1) <
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