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Introduction

Hash Functions

Merkle-Damgård Hash Function Design (MD):

M injectively padded: M 7→ M1 · · ·Mk = M‖1‖0−|M|−1 mod m‖〈|M|〉m
Mi compressed iteratively using f : {0, 1}n+m → {0, 1}n
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Introduction

Hash Function Security Requirements

Preimage resistance

Second preimage resistance

Collision resistance

Multicollision resistance

Security against length extension attack

Chosen-target-forced-pre�x preimage resistance

.......

Chosen-target-forced-pre�x (CTFP) preimage resistance

(security against herding attack)

Choose y , given P , �nd R such that H(P‖R) = y

Applications: predicting elections, sports games, etc.

Ideally, CTFP attack requires 2n work
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Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h

��
�
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack for MD [Kelsey & Kohno, 06]

Phase 1Phase 2

iv -P
h �

��
��*

h8

h7
h6

h5
h4

h3
h2

h1

���1

PPPq

���1

PPPq

���1

PPPq

��
�1

PPPq

��
�*

HHHj

��
�*

HHHj

�
���

@
@@R

y

attack L = |M| complexity (f -calls)

herding O(n) blocks
√
n22n/3

elongated herding
O(n + 2r ) blocks

√
n22n/3/2r/3

(0 ≤ r ≤ n/2)

4 / 15



Introduction

Herding Attack Beyond MD

Herding attack generalized to MD-based hash functions

Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]
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Introduction

Our Contributions

Chosen-target-forced-mid�x (CTFM) preimage resistance

Formalize and generalize security against herding

Notion particularly covers all known attacks

CTFM security bound for MD

We formally prove security of MD

Analysis directly applies to other hash functions

Existence of optimally CTFM secure hash functions?

No optimally secure narrow-pipe design known
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Chosen-Target-Forced-Mid�x (CTFM) Security

Chosen-Target-Forced-Mid�x (CTFM) Security

p : length of forced mid�x (bits)

L : max. length of forged preimage (blocks)

De�nition

H using ideal compression function f : {0, 1}n+m → {0, 1}n

Adversary A query access to f

Af

−−−−→ y

←−−−− P
$← {0, 1}p

−−−−→ g ,R

A wins if Hf (g(P,R)) = y and
∣∣rng(g)∣∣ ≤ 2Lm

Adv
ctfm

H (q): success probability of any adversary making q queries

In remainder, g(P,R1‖R2) = R1‖P‖R2, where R1,R2 of arbitrary length
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Herding attack for MD

g(P,R2) = P‖R2

R1 is empty string

P is pre�x

Herding attack for zipper

g(P,R1) = R1‖P
R2 is empty string

P is su�x
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CTFM Security of MD

CTFM Security of MD

p : length of forced mid�x (bits)

L : max. length of forged preimage (blocks)

Theorem

For any integral t > 0:

Adv
ctfm

MD (q) ≤ (L− 1)tq

2n
+

m2dp/meq

2p
+

(
q2e

t2n

)t

+
q3

22n

︸ ︷︷ ︸
succ | ¬Ei

︸ ︷︷ ︸
E0

︸ ︷︷ ︸
E1

︸︷︷︸
E2

t: tradeo� between �rst and third term

p dominates second term: E0 covers event �A guesses P�

L dominates �rst term: larger L gives higher success probability
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CTFM Security of MD

Implications

Corollary

Let p be �large enough� (see paper). For any ε > 0:

lim
n→∞

Adv
ctfm

MD

(
22n/3/L1/3 · 2-nε

)
= 0

Implies (asymptotic) optimality of

Original attack of Kelsey & Kohno
Almost all attacks of Gauravaram et al. and Andreeva et al.

Analysis can easily be generalized to other hash functions, such as

MD with pre�x-free or su�x-free padding
Enveloped MD
MD with permutation
HAIFA
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CTFM Security of MD

Proof Idea

Attack consists of two phases:

First phase: A queries f and decides on y

A receives random challenge P

Second phase: A queries f and outputs g ,R s.t. Hf (g(P,R)) = y

Graph: f (hi−1,Mi ) = hi corresponds to arc hi−1
Mi−→ hi

�x at distance k from y �: there exists a path x −→ y of length k

A wins if:

E0 He guesses P in the �rst phase

E1 For some node y and k ∈ {0, . . . , L}: graph contains more

than t elements at distance k from y

E2 Graph contains 3-way collision

succ | ¬Ei Adversary �nds CTFM preimage given ¬Ei
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Optimally CTFM Secure Hash Functions

Optimally CTFM Secure Hash Functions

Wide-pipe

Wide-piping renders optimal CTFM security (trivial)

Narrow-pipe

No optimally CTFM secure narrow-pipe hash function known

We consider two possible directions:

Salting
Message modi�cation: MD with more sophisticated padding
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Optimally CTFM Secure Hash Functions

Salted-Chosen-Target-Forced-Mid�x (SCTFM) Security

H : {0, 1}s × {0, 1}∗ → {0, 1}n

H(S ,M) = y

Variant 1:

Af

−−−−→ y , S

←−−−− P
$← {0, 1}p

−−−−→ g ,R

Variant 2:

Af

−−−−→ y

←−−−− P
$← {0, 1}p

−−−−→ g ,R, S

Variant 3:

Af

←−−−− S
$← {0, 1}s

−−−−→ y

←−−−− P
$← {0, 1}p

−−−−→ g ,R

Variant 4:

Af

−−−−→ y

←−−−− P
$← {0, 1}p

←−−−− S
$← {0, 1}s

−−−−→ g ,R

Variant 1, 2, 3 : A knows salt, so AdvsctfmH (A) = Adv
ctfm

H (A)
Variant 4 : A commits to y without knowing hash function instance
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Optimally CTFM Secure Hash Functions

Message Modi�cation

Herding attack: edges in diamond added independently of each other

Idea: create dependence among message blocks

We describe attack for this and similar hash functions

Same complexity as original herding attack (up to constant)
Optimal due to our security bound
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Supporting Slides

Detailed Proof Idea (1)

E0 | ¬E2: A guesses P

By ¬E2: graph contains at most m2dp/meq strings of length p

Any such path equals P with probability at most 1/2p

Pr (E0 | ¬E2) ≤
m2dp/meq

2p

E1 | ¬E2: > t elements at distance k from y

By ¬E2: only 2-way collisions

One can show: graph must contain t 2-way collisions

Pr (E1 | ¬E2) ≤
(
q

t

)( q

2n

)t
≤
(
q2e

t2n

)t
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Supporting Slides

Detailed Proof Idea (2)

E2: 3-way collision

Pr (E2) ≤
q3

22n

succ | ¬Ei : CTFM preimage

Forged message of length at most L blocks

A needs at least one query to hit any of the L− 1 closest layers to y

By ¬E1: at most t nodes per layer

Pr (sucA(q2) | ¬E0 ∧ ¬E1) ≤
(L− 1)tq

2n
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