XOR of PRPs in a Quantum World

Bart Mennink, Alan Szepieniec

Radboud University (The Netherlands), KU Leuven (Belgium)

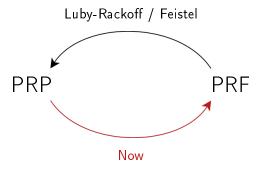
> PQCrypto 2017 June 26, 2017

Introduction

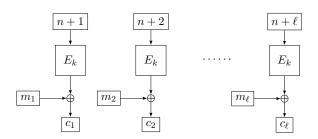
PRP PRF

Introduction

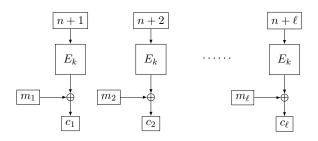
Introduction



Counter Mode Based on Pseudorandom Permutation



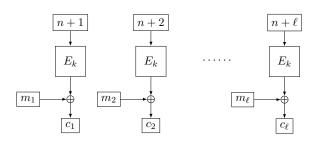
Counter Mode Based on Pseudorandom Permutation



• Security bound:

$$\mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(q,t) \leq \mathsf{Adv}^{\mathrm{prp}}_E(q,t) + \binom{q}{2}/2^n$$

Counter Mode Based on Pseudorandom Permutation

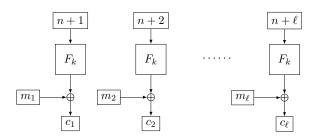


Security bound:

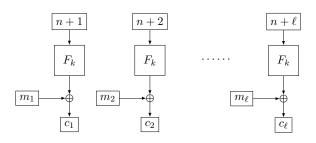
$$\mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(q,t) \leq \mathsf{Adv}^{\mathrm{prp}}_E(q,t) + \binom{q}{2}/2^n$$

- ullet CTR[E] is secure as long as:
 - E_k is a secure PRP (typically $t \ll 2^{\kappa}$)
 - Number of encrypted blocks $q \ll 2^{n/2}$

Counter Mode Based on Pseudorandom Function



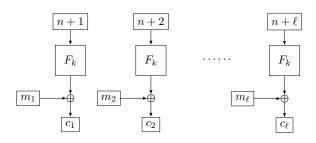
Counter Mode Based on Pseudorandom Function



• Security bound:

$$\mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(q) \leq \mathsf{Adv}^{\mathrm{prf}}_F(q)$$

Counter Mode Based on Pseudorandom Function

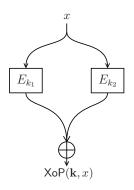


• Security bound:

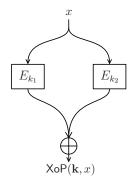
$$\mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(q) \leq \mathsf{Adv}^{\mathrm{prf}}_F(q)$$

- ullet CTR[F] is secure as long as F_k is a secure PRF
- Birthday bound security loss disappeared

XOR of PRPs

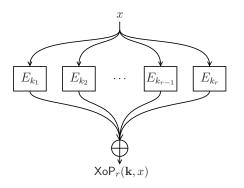


XOR of PRPs



 $\bullet \ \min\{2^\kappa, 2^n\} \ \mathsf{security} \ [\mathsf{BI99}, \mathsf{Luc00}, \mathsf{Pat08}]$

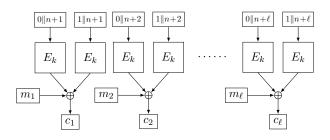
XOR of PRPs



- $\bullet \min\{2^\kappa, 2^n\}$ security [BI99,Luc00,Pat08]
- \bullet Bound preserved for $r \geq 3$ [CLP14,MP15]

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q,t) \leq r \cdot \mathsf{Adv}^{\mathrm{prp}}_E(q,t) + q/2^n$$

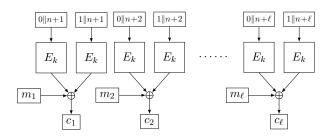
Counter Mode Based on XoP



• Security bound:

$$\mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(q,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q,t)$$

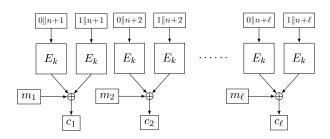
Counter Mode Based on XoP



• Security bound:

$$\begin{split} \mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(q,t) & \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q,t) \\ & \leq \mathsf{Adv}^{\mathrm{prp}}_{E}(2q,t) + q/2^n \end{split}$$

Counter Mode Based on XoP



• Security bound:

$$\begin{split} \mathsf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(q,t) & \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q,t) \\ & \leq \mathsf{Adv}^{\mathrm{prp}}_{E}(2q,t) + q/2^n \end{split}$$

• $\min\{2^{\kappa}, 2^n\}$ security

Simon/Shor

- Poly-time period finding
- Used to attack Even-Mansour, CBC-MAC, ...
- Quantum interaction with keyed primitive

Simon/Shor

- Poly-time period finding
- Used to attack Even-Mansour, CBC-MAC, . . .
- Quantum interaction with keyed primitive

Grover

- "Halves the key size"
- No quantum interaction needed

Simon/Shor

- Poly-time period finding
- Used to attack Even-Mansour, CBC-MAC, ...
- Quantum interaction with keyed primitive

Grover

- "Halves the key size"
- No quantum interaction needed

This work: no quantum interaction

Our Contribution

Classical Versus Quantum Proofs

- Formalization of types of distinguishers
- Exposition of how classical proofs subsist quantumly
- Applicable to myriad cryptographic schemes

Our Contribution

Classical Versus Quantum Proofs

- Formalization of types of distinguishers
- Exposition of how classical proofs subsist quantumly
- Applicable to myriad cryptographic schemes

Quantum Security Analysis of XoP

• Application of subsistence: $\min\{2^{\kappa/2},2^n\}$ security

Our Contribution

Classical Versus Quantum Proofs

- Formalization of types of distinguishers
- Exposition of how classical proofs subsist quantumly
- Applicable to myriad cryptographic schemes

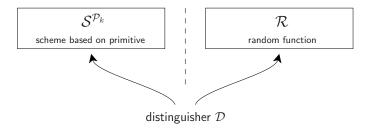
Quantum Security Analysis of XoP

• Application of subsistence: $\min\{2^{\kappa/2},2^n\}$ security

Key Recovery Attack on XoP

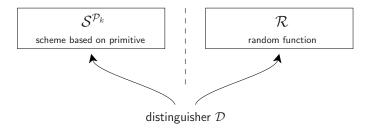
- Attack in complexity $2^{\kappa r/(r+1)}$ (improves over Grover)
- Relies on claw-finding algorithm

General Security Framework



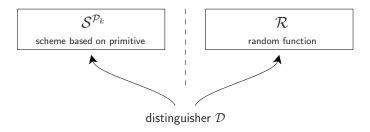
 \bullet Distinguishing advantage $\mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,t)$

General Security Framework



- Distinguishing advantage $\mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,t)$
- Online complexity: q oracle queries
- Offline complexity: t time

General Security Framework



- Distinguishing advantage $\mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{P}_k}}(q,t)$
- ullet Online complexity: q oracle queries
- Offline complexity: t time
- \mathcal{D} knows \mathcal{P} : can make $\approx t$ offline evaluations

set of \mathcal{D} 's	online	offline
$\mathbb{D}(q,t)$	$q\ classical$	$t\ {\sf classical}$
$\mathbb{D}(q,\hat{t})$	$q\ classical$	$t \; quantum$
$\mathbb{D}(\hat{q},\hat{t})$	$q\ quantum$	$t \; quantum$

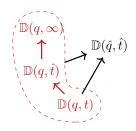
set of \mathcal{D} 's	online	offline	•
$\mathbb{D}(q,t)$	q classical	$t\ classical$	← classical distinguishers
$\mathbb{D}(q,\hat{t})$	q classical	$t \; quantum$	← includes Grover
$\mathbb{D}(\hat{q},\hat{t})$	$q\ quantum$	$t \; quantum$	\leftarrow includes Simon/Shor

set of \mathcal{D} 's	online	offline	
$\mathbb{D}(q,t)$	q classical	t classical	\leftarrow
$\mathbb{D}(q,\hat{t})$	$q\ classical$	$t \; quantum$	\leftarrow
$\mathbb{D}(\hat{q},\hat{t})$	$q\ quantum$	$t \; quantum$	\leftarrow
$\mathbb{D}(q,\infty)$	$q\ classical$	∞	\leftarrow

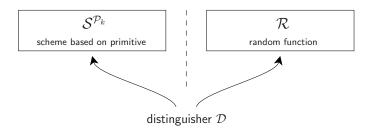
← classical distinguishers
 ← includes Grover
 ← includes Simon/Shor
 ← used a lot in classical crypto

set of \mathcal{D} 's	online	offline
$\mathbb{D}(q,t)$	q classical	$t\ classical$
$\mathbb{D}(q,\hat{t})$	q classical	$t \; quantum$
$\mathbb{D}(\hat{q},\hat{t})$	$q\ quantum$	$t \; quantum$
$\mathbb{D}(q,\infty)$	q classical	∞

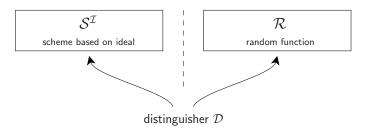
← classical distinguishers
 ← includes Grover
 ← includes Simon/Shor
 ← used a lot in classical crypto



$$\mathbb{D}(q,t) \subseteq \mathbb{D}(q,\hat{t}) \subseteq \mathbb{D}(q,\infty)$$

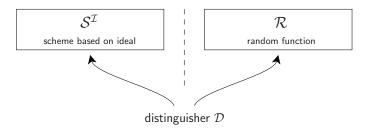


$$\mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{P}_k}}(q,t)$$



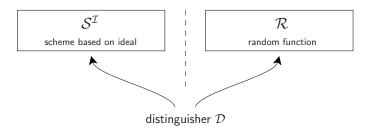
ullet Step 1: replace \mathcal{P}_k by ideal equivalent $\mathcal I$

$$\mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{P}_k}}(q,t) \leq \mathsf{Adv}^{\mathcal{I}}_{\mathcal{P}_k}(q',t') + \mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{I}}}(q,t)$$



- ullet Step 1: replace \mathcal{P}_k by ideal equivalent \mathcal{I}
- Step 2: first term is primitive security (e.g., PRP)

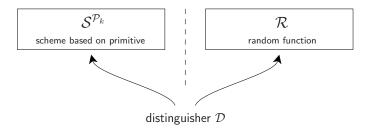
$$\begin{aligned} \mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,t) &\leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',t') + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,t) \\ &\leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',t') + \end{aligned}$$



- ullet Step 1: replace \mathcal{P}_k by ideal equivalent $\mathcal I$
- Step 2: first term is primitive security (e.g., PRP)
- ullet Step 3: second term ${\mathcal P}$ -invariant: give ${\mathcal D}$ infinite time

$$\begin{split} \mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,t) & \leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',t') + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,t) \\ & \leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',t') + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,\infty) \end{split}$$

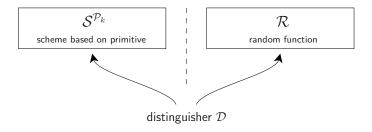
Conversion to Quantum



Identical story holds for quantum distinguishers

$$\mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,\hat{t}) \leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',\hat{t'}) + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,\infty)$$

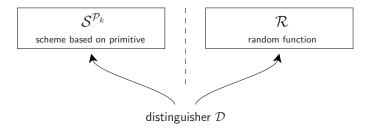
Conversion to Quantum



Identical story holds for quantum distinguishers

$$\begin{split} \mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,\hat{t}) \leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',\hat{t'}) + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,\infty) \\ t' \ll 2^{\kappa/2}? \end{split}$$

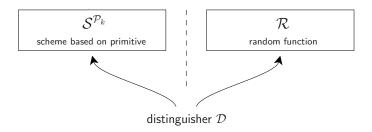
Conversion to Quantum



Identical story holds for quantum distinguishers

$$\begin{split} \mathsf{Adv}_{\mathcal{S}^{\mathcal{P}_k}}^{\mathcal{R}}(q,\hat{t}) & \leq \mathsf{Adv}_{\mathcal{P}_k}^{\mathcal{I}}(q',\hat{t'}) + \mathsf{Adv}_{\mathcal{S}^{\mathcal{I}}}^{\mathcal{R}}(q,\infty) \\ & \qquad \qquad \qquad \\ t' & \ll 2^{\kappa/2}? \end{split}$$
 classical analysis carries over

Conversion to Quantum



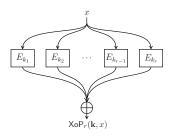
Identical story holds for quantum distinguishers

$$\mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{P}_k}}(q,\hat{t}) \leq \mathsf{Adv}^{\mathcal{I}}_{\mathcal{P}_k}(q',\hat{t'}) + \mathsf{Adv}^{\mathcal{R}}_{\mathcal{S}^{\mathcal{I}}}(q,\infty)$$

$$t' \ll 2^{\kappa/2}? \qquad \mathsf{classical analysis carries over}$$

 Conversion applies to all standard model proofs (not covered: permutation-based modes)

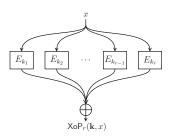
Quantum Security Analysis of XoP



Theorem [Pat08,MP15] For $r \geq 2$ and $q \leq 2^n/67$ we have

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}_r}(q,t) \leq r \cdot \mathsf{Adv}^{\mathrm{prp}}_E(q,t) + q/2^n$$

Quantum Security Analysis of XoP



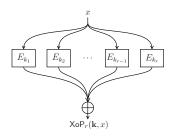
Theorem [Pat08,MP15] For $r \geq 2$ and $q \leq 2^n/67$ we have

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}_r}(q,t) \leq r \cdot \mathsf{Adv}^{\mathrm{prp}}_E(q,t) + q/2^n$$

Theorem For $r \geq 2$ and $q \leq 2^n/67$ we have

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}_r}(q,\hat{t}) \leq r \cdot \mathsf{Adv}^{\mathrm{prp}}_E(q,\hat{t}) + q/2^n$$

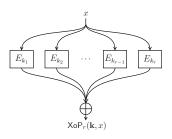
Key Recovery Attack on XoP



Theorem For
$$r\geq 1$$
, $\tau\geq 1$, $t=O(\tau\cdot 2^{\kappa r/(r+1)})$ we have
$$\mathrm{Adv}^{\mathrm{key}}_{\mathrm{XoP}_r}(\tau,\hat{t})\geq 1-\varepsilon(r,\tau,n)$$

ullet arepsilon monotonically decreasing in threshold au

Key Recovery Attack on XoP



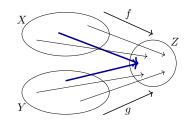
Theorem For $r \geq 1$, $\tau \geq 1$, $t = O(\tau \cdot 2^{\kappa r/(r+1)})$ we have

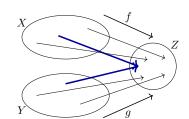
$$\mathsf{Adv}^{\ker}_{\mathsf{XoP}_r}(\tau,\hat{t}) \ge 1 - \varepsilon(r,\tau,n)$$

- ullet arepsilon monotonically decreasing in threshold au
- Goal: construct an adversary

Claw-Finding

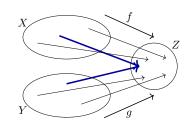
- $\bullet \mbox{ Given } f:X\to Z \mbox{ and } g:Y\to Z$
- Find (x,y) s.t. f(x) = g(y)





Claw-Finding

- ullet Given f:X o Z and g:Y o Z
- Find (x,y) s.t. f(x) = g(y)
- ullet Tani (2009): algorithm with complexity $O\left((|X|\cdot|Y|)^{1/3}
 ight)$

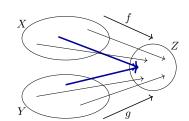


Claw-Finding

- ullet Given f:X o Z and g:Y o Z
- Find (x,y) s.t. f(x) = g(y)
- ullet Tani (2009): algorithm with complexity $O\left((|X|\cdot|Y|)^{1/3}
 ight)$

Predicate-Finding

- ullet Given f:X o Z and g:Y o Z
- ullet Given relation R
- Find $(x_1 \dots x_p, y_1 \dots y_q)$ s.t. $(f(x_1) \dots f(x_p), g(y_1) \dots g(y_q)) \in R$



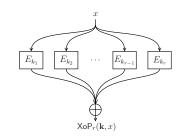
Claw-Finding

- ullet Given f:X o Z and g:Y o Z
- Find (x,y) s.t. f(x) = g(y)
- Tani (2009): algorithm with complexity $O\left((|X|\cdot|Y|)^{1/3}\right)$

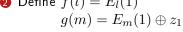
Predicate-Finding

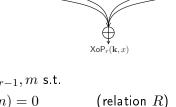
- ullet Given f:X o Z and g:Y o Z
- ullet Given relation R
- Find $(x_1 \dots x_p, y_1 \dots y_q)$ s.t. $(f(x_1) \dots f(x_p), g(y_1) \dots g(y_q)) \in R$
- ullet Tani (2009): algorithm with complexity $O\left((|X|^p\cdot |Y|^q)^{1/(p+q+1)}
 ight)$

- 2 Define $f(l) = E_l(1)$ $g(m) = E_m(1) \oplus z_1$



- **2** Define $f(l) = E_l(1)$ $q(m) = E_m(1) \oplus z_1$





3 Apply Tani's algorithm to find l_1, \ldots, l_{r-1}, m s.t.

$$f(l_1) \oplus f(l_2) \oplus \ldots \oplus f(l_{r-1}) \oplus g(m) = 0$$

 E_{k_r}

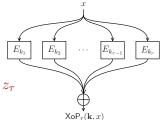
 E_{k_1} E_{k_2} \cdots $E_{k_{r-1}}$ E_{k_r}

- $\text{ Define } f(l) = E_l(1) \\ g(m) = E_m(1) \oplus z_1$
- **3** Apply Tani's algorithm to find l_1, \ldots, l_{r-1}, m s.t.

$$f(l_1) \oplus f(l_2) \oplus \ldots \oplus f(l_{r-1}) \oplus g(m) = 0$$

(relation R)

- Online queries: 1
- Offline complexity: $O(2^{\kappa r/(r+1)})$
- Success probability: quite low due to false positives

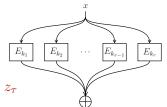


- $\text{ Define } f(l) = E_l(1) \\ g(m) = E_m(1) \oplus z_1$
- **3** Apply Tani's algorithm to find l_1, \ldots, l_{r-1}, m s.t.

$$f(l_1) \oplus f(l_2) \oplus \ldots \oplus f(l_{r-1}) \oplus g(m) = 0$$

(relation R)

- Online queries: $\pm \tau$
- Offline complexity: $O(2^{\kappa r/(r+1)})$
- Success probability: quite low due to false positives



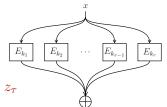
 $XoP_r(\mathbf{k}, x)$

- $\text{Define } f(l) = E_l(1) \parallel \cdots \parallel E_l(\tau) \\ g(m) = E_m(1) \oplus z_1 \parallel \cdots \parallel E_m(\tau) \oplus z_\tau$
- **3** Apply Tani's algorithm to find l_1, \ldots, l_{r-1}, m s.t.

$$f(l_1) \oplus f(l_2) \oplus \ldots \oplus f(l_{r-1}) \oplus g(m) = 0$$

(relation R)

- Online queries: $\pm \tau$
- Offline complexity: $O(2^{\kappa r/(r+1)})$ $O(\tau \cdot 2^{\kappa r/(r+1)})$
- Success probability: quite low due to false positives



 $XoP_r(\mathbf{k}, x)$

- **3** Apply Tani's algorithm to find l_1, \ldots, l_{r-1}, m s.t.

$$f(l_1) \oplus f(l_2) \oplus \ldots \oplus f(l_{r-1}) \oplus g(m) = 0$$

(relation R)

- Online queries: ¹/_τ
- Offline complexity: $O(2^{\kappa r/(r+1)})$ $O(au \cdot 2^{\kappa r/(r+1)})$
- Success probability: quite low due to false positives approaching 1 for increasing au

Conclusion

Proof subsistence

- Simple and natural
- Broadly applicable

Primitive isolation step

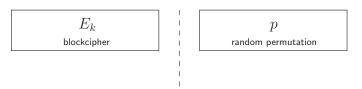
- Tight if there is only one key
- Loose if multiple keys are involved
- Non-trivial to get around

Thank you for your attention!

Supporting Slides

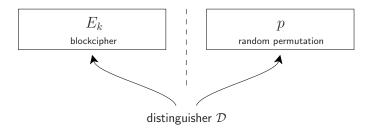
SUPPORTING SLIDES

Pseudorandom Permutation



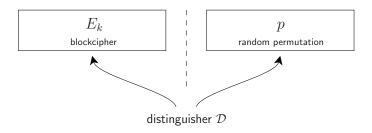
 \bullet Two oracles: E_k (for secret random key k) and p

Pseudorandom Permutation



- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

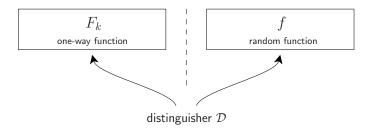
Pseudorandom Permutation



- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\cal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

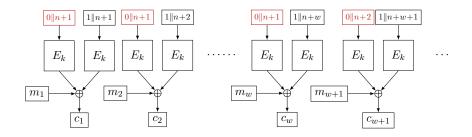
$$\mathsf{Adv}_E^{\mathrm{prp}}(\mathcal{D}) = \left| \mathbf{P} \left(\mathcal{D}^{E_k} = 1 \right) - \mathbf{P} \left(\mathcal{D}^p = 1 \right) \right|$$

Pseudorandom Function

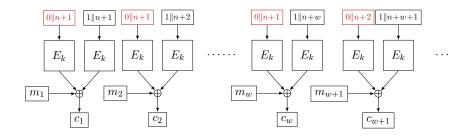


- ullet Two oracles: F_k (for secret random key k) and f
- ullet Distinguisher ${\mathcal D}$ has query access to either F_k or f
- ullet ${\cal D}$ tries to determine which oracle it communicates with

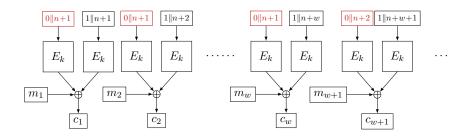
$$\mathsf{Adv}_F^{\mathrm{prf}}(\mathcal{D}) = \left| \mathbf{P}\left(\mathcal{D}^{F_k} = 1\right) - \mathbf{P}\left(\mathcal{D}^f = 1\right) \right|$$



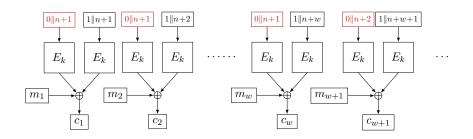
 \bullet One subkey used for $w \geq 1$ encryptions



- ullet One subkey used for $w\geq 1$ encryptions
- $\bullet \ \mathsf{Almost} \ \mathsf{as} \ \mathsf{expensive} \ \mathsf{as} \ \mathsf{CTR}[E] \\$



- One subkey used for $w \ge 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]



- One subkey used for $w \ge 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]