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e CTR[E] is secure as long as:

e [ is a secure PRP (typically ¢ < 2%)
e Number of encrypted blocks ¢ < 2/2
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Counter Mode Based on Pseudorandom Function

F, F,

...... Fk

e Security bound:

cpa rf
Ach%-R[F] (q) < Adv% (9)

o CTR[F] is secure as long as Fj, is a secure PRF
e Birthday bound security loss disappeared
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Our Contribution

Classical Versus Quantum Proofs
e Formalization of types of distinguishers
e Exposition of how classical proofs subsist quantumly

o Applicable to myriad cryptographic schemes

Quantum Security Analysis of XoP

o Application of subsistence: min{2%/2 2"} security

Key Recovery Attack on XoP
o Attack in complexity 2°"/("+1) (improves over Grover)

e Relies on claw-finding algorithm

8/17



General Security Framework

SP

scheme based on primitive

R

random function

distinguisher D

e Distinguishing advantage Adv;%;,c (g, 1)

9/17



General Security Framework

R

random function

SP

scheme based on primitive

distinguisher D

e Distinguishing advantage Adv;%;,c (g, 1)
e Online complexity: g oracle queries

e Offline complexity: t time

9/17



General Security Framework

R

random function

SP

scheme based on primitive

distinguisher D

Distinguishing advantage Adv;%;,c (g, 1)

Online complexity: ¢ oracle queries

Offline complexity: t time

D knows P: can make = t offline evaluations
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Typical Classical Security Proof

é;I

scheme based on ideal

R

random function

distinguisher D

o Step 1: replace Py by ideal equivalent 7
e Step 2: first term is primitive security (e.g., PRP)

e Step 3: second term P-invariant: give D infinite time

AdvE, (4.1) < Adv, (/1) + AdvEe(q.)
< Adv%k (¢, ) + Adv: (g, 0)
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random function

distinguisher D

e Identical story holds for quantum distinguishers

Adv;%;]c (¢,1) < Adv%k (¢, tA’) + Advgz (g, )

t < 26/27 classical analysis carries over

e Conversion applies to all standard model proofs
(not covered: permutation-based modes)

12/17



Quantum Security Analysis of XoP

xT

] -

XoP, (k, z)

Theorem [Pat08,MP15] For r > 2 and ¢ < 2"/67 we have

rf T
Advf(OP (q,t) <r-Adv;P(q,t) +q/2"

13/17



Quantum Security Analysis of XoP

xT

] [

] | & ]

XoP, (k, z)

Theorem [Pat08,MP15] For r > 2 and ¢ < 2"/67 we have

Advgffp (q,t) <7 -AdVEP(q,t) + q/2"

Theorem For r > 2 and ¢ < 2™/67 we have
Advg)(rofP (q t) <r. Adv%rp(q, )+ q/2"

13/17



Key Recovery Attack on XoP

] [

XoP, (k, z)

Theorem Forr > 1, 7>1,t=0(T- 2’“"/(’”“)) we have

Advi((iypr(T, t)>1—¢e(r,7,n)

e ¢ monotonically decreasing in threshold 7

14 /17



Key Recovery Attack on XoP

] -

XoP, (k, z)

Theorem Forr > 1, 7>1,t=0(T- 2’“"/(’”“)) we have

Advi((eoypr(r, t)>1—¢e(r,7,n)

e ¢ monotonically decreasing in threshold 7

e Goal: construct an adversary
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Key Recovery Adversary :

® Query XoP,(k,1) =z, ..., XoP,(k,7) = 2,

@® Define f(I) =E;(1) || --- || Ei(7) b
gm) =En(1)@z1 || - || En(7) ® 27
® Apply Tani’s algorithm to find I4,...,l,—1,m s.t.
flefl)e...s f(l,—1) ®glm)=0 (relation R)
Complexity

e Online queries: + 7

o Offline complexity: Qgﬂﬂﬂ)—) o(r . 9nr/( T’+1))
e Success probability: guitelow-due-to-falsepositives

approaching 1 for increasing 7
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Conclusion

Proof subsistence
e Simple and natural

e Broadly applicable

Primitive isolation step
e Tight if there is only one key
e Loose if multiple keys are involved

e Non-trivial to get around

Thank you for your attention!
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random permutation

distinguisher D

e Two oracles: Ej (for secret random key k) and p
e Distinguisher D has query access to either E}, or p

e D tries to determine which oracle it communicates with

AdVRP(D) = |P (DP* = 1) — P (DP = 1)
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Pseudorandom Function

Fy,

one-way function

f

random function

distinguisher D

e Two oracles: F}; (for secret random key k) and f
e Distinguisher D has query access to either F or f

e D tries to determine which oracle it communicates with

AV (D) = [P (D™ = 1) — P (D = 1))
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2016: 2" /w security [IMV16]

21/17



	Introduction
	Security Subsistence
	Quantum Security Analysis of XoP
	Key Recovery Attack on XoP
	Conclusion

