
The Parazoa Family:

Generalizing the Sponge Hash Functions

Elena Andreeva, Bart Mennink and Bart Preneel

KU Leuven

ECRYPT II Hash Workshop 2011 � May 19, 2011

1 / 15



The Sponge Hash Function Design

1 Message padded into M1, . . . ,Mk (where Mk 6= 0)

2 Mi's iteratively compressed in the absorbing phase

3 Pi's iteratively extracted in the extraction phase

4 P1, . . . , Pl are concatenated and chopped if necessary

• Sponge functions indi�erentiable from RO up to O(2c/2) queries

2 / 15



Sponge Functions and Variants

• Sponge function:
• Keccak

• �Sponge-like� functions:
• Grindahl
• SHA-3 candidates CubeHash, Fugue, Hamsi, JH, Lu�a

• Security of sponge functions does not directly carry over

• Minor modi�cation to sponge design can make it insecure

3 / 15



Sponge Functions and Variants

• Sponge function:
• Keccak

• �Sponge-like� functions:
• Grindahl
• SHA-3 candidates CubeHash, Fugue, Hamsi, JH, Lu�a

• Security of sponge functions does not directly carry over

• Minor modi�cation to sponge design can make it insecure

3 / 15



Sponge Functions and Variants

• Sponge function:
• Keccak

• �Sponge-like� functions:
• Grindahl
• SHA-3 candidates CubeHash, Fugue, Hamsi, JH, Lu�a

• Security of sponge functions does not directly carry over

• Minor modi�cation to sponge design can make it insecure

3 / 15



Insecure Sponge-Like Function

A sponge-like design (here, c = r):

• Di�erentiable from RO due to the length-extension attack

• Injection into upper halve, extraction from lower halve

• Attack does not invalidate security of the original sponge design

4 / 15



Insecure Sponge-Like Function

A sponge-like design (here, c = r):

• Di�erentiable from RO due to the length-extension attack

• Injection into upper halve, extraction from lower halve

• Attack does not invalidate security of the original sponge design

4 / 15



Insecure Sponge-Like Function

A sponge-like design (here, c = r):

• Di�erentiable from RO due to the length-extension attack

• Injection into upper halve, extraction from lower halve

• Attack does not invalidate security of the original sponge design

4 / 15



Origin of the Name �Parazoa�

Sponge

In the biological classi�cation of organ-

isms, sponges are a member of the phy-

lum Porifera, which belongs to the sub-

kingdom Parazoa

Source: http://en.wikipedia.org/wiki/Parazoa

5 / 15



Origin of the Name �Parazoa�

Sponge

In the biological classi�cation of organ-

isms, sponges are a member of the phy-

lum Porifera, which belongs to the sub-

kingdom Parazoa

Source: http://en.wikipedia.org/wiki/Parazoa

5 / 15



The Parazoa Hash Function Design

1 M padded into M1, . . . ,Mk

2 Mi's iteratively compressed in the absorbing phase

3 Pi's iteratively extracted in the extraction phase

4 h generated from P1, . . . , Pl in the �nalization

6 / 15



The Parazoa Hash Function Design

1 M padded into M1, . . . ,Mk

2 Mi's iteratively compressed in the absorbing phase

3 Pi's iteratively extracted in the extraction phase

4 h generated from P1, . . . , Pl in the �nalization

6 / 15



The Parazoa Hash Function Design

1 M padded into M1, . . . ,Mk

2 Mi's iteratively compressed in the absorbing phase

3 Pi's iteratively extracted in the extraction phase

4 h generated from P1, . . . , Pl in the �nalization

6 / 15



The Parazoa Hash Function Design

1 M padded into M1, . . . ,Mk

2 Mi's iteratively compressed in the absorbing phase

3 Pi's iteratively extracted in the extraction phase

4 h generated from P1, . . . , Pl in the �nalization

6 / 15



The Parazoa Hash Function Design

• The functions f , g, fin and pad are discussed in more detail

• π is an s-bits permutation
• Assumed to behave like random primitive

7 / 15



Compression Function f

We require:

• For �xed vi−1, a distinct Mi results in a distinct x = Lin(vi−1,Mi)

• If x, x′ share some preimage vi−1 under Lin, they share all preimages

• For �xed vi−1,Mi, the function Lout is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

8 / 15



Compression Function f

We require:

• For �xed vi−1, a distinct Mi results in a distinct x = Lin(vi−1,Mi)

• If x, x′ share some preimage vi−1 under Lin, they share all preimages

• For �xed vi−1,Mi, the function Lout is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

8 / 15



Compression Function f

We require:

• For �xed vi−1, a distinct Mi results in a distinct x = Lin(vi−1,Mi)

• If x, x′ share some preimage vi−1 under Lin, they share all preimages

• For �xed vi−1,Mi, the function Lout is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

8 / 15



Compression Function f

We require:

• For �xed vi−1, a distinct Mi results in a distinct x = Lin(vi−1,Mi)

• If x, x′ share some preimage vi−1 under Lin, they share all preimages

• For �xed vi−1,Mi, the function Lout is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

8 / 15



Compression Function f

We require:

• For �xed vi−1, a distinct Mi results in a distinct x = Lin(vi−1,Mi)

• If x, x′ share some preimage vi−1 under Lin, they share all preimages

• For �xed vi−1,Mi, the function Lout is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

8 / 15



Extraction Function g

We require: Lex is balanced

Result can be extended to more general g:

9 / 15



Extraction Function g

We require: Lex is balanced

Result can be extended to more general g:

9 / 15



Finalization Function fin

We require: fin is balanced

• Parazoa functions also allow for arbitrarily long outputs

• Sponge design:

fin(P1, . . . , Pl) = choplp−n(P1‖ · · · ‖Pl)

10 / 15



Padding Function pad

We require: pad is any injective padding function s.t.:

• Either l = 1 (only one extraction round), or

• Last block Mk satis�es for any x, v′,M ′:

Lin(x,Mk) 6= x and Lin(Lout(x, v
′,M ′),Mk) 6= x

(for sponge functions: �last block is non-zero�)

11 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions:

d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions: d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions: d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions: d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions: d = 0 and s− d− p = c

• For the insecure sponge-like function:

d = r and s− d− p = 0

12 / 15



Parameter d

• Consider tuples (v, x) s.t. Lin(v,M) = x for some M

• d ≥ 0 is the minimal value such that:
• For �xed x and P := Lex(v): at most 2d possible tuples (v, x)
• For �xed v and P := Lex(x): at most 2d possible tuples (v, x)

• Intuitively, s− d− p corresponds to the �capacity�

• For sponge functions: d = 0 and s− d− p = c

• For the insecure sponge-like function: d = r and s− d− p = 0

12 / 15



Security Analysis

Parazoa functions are O

(
(Kq)2

2s−d−p

)
indi�erentiable from RO

(where the distinguisher makes at most q queries of K blocks)

s: iterated state size

d: quantity inherent to the speci�c parazoa design

p: number of bits extracted in one execution of g

• π behaves like a random permutation

• Result can be generalized to use of multiple random primitives

13 / 15



Security Analysis

Parazoa functions are O

(
(Kq)2

2s−d−p

)
indi�erentiable from RO

(where the distinguisher makes at most q queries of K blocks)

s: iterated state size

d: quantity inherent to the speci�c parazoa design

p: number of bits extracted in one execution of g

• π behaves like a random permutation

• Result can be generalized to use of multiple random primitives

13 / 15



Implications for Existing Designs

Algorithm (s,m, p) d Indi�. q ≈ Assumption

Sponge (r + c, r, r) 0 2c/2 π ideal

Grindahl (s,m, n) m 2(s−m−n)/2 π ideal

Quark (r + c, r, r) 0 2c/2 π ideal

PHOTON-(r′≤ r) (r + c, r, r′) r − r′ 2c/2 π ideal

PHOTON-(r′≥ r) (r + c, r, r′) 0 2(c+r−r′)/2 π ideal

SPONGENT (r + c, r, r) 0 2c/2 π ideal

CubeHash-n (1024, 257, n) 1 2(1023−n)/2 P 16 ideal

Fugue-(n ≤ 256) (960, 32, n) m 2(928−n)/2 π, π′ ideal
Fugue-(n > 256) (1152, 32, n) m 2(1120−n)/2 π, π′ ideal
JH-n (1024, 512, n) m 2(512−n)/2 π ideal
Keccak-n (1600, s− 2n, n) s− 3n 2n π ideal
Lu�a-(n ≤ 256) (768, 256, 256) 0 2256 Q1‖ · · · ‖Q3 ideal
Lu�a-384 (1024, 256, 256) 0 2384 Q1‖ · · · ‖Q4 ideal
Lu�a-512 (1280, 256, 256) 0 2512 Q1‖ · · · ‖Q5 ideal

s = internal state, m = message injection, p = is digest extraction, n = output size
For SHA-3 candidates: n ∈ {224, 256, 384, 512}

• Moody et al. (2012): indi�erentiability of JH up to 2256 queries

• Design-speci�c proofs may result in better bounds

14 / 15



Implications for Existing Designs

Algorithm (s,m, p) d Indi�. q ≈ Assumption

Sponge (r + c, r, r) 0 2c/2 π ideal

Grindahl (s,m, n) m 2(s−m−n)/2 π ideal

Quark (r + c, r, r) 0 2c/2 π ideal

PHOTON-(r′≤ r) (r + c, r, r′) r − r′ 2c/2 π ideal

PHOTON-(r′≥ r) (r + c, r, r′) 0 2(c+r−r′)/2 π ideal

SPONGENT (r + c, r, r) 0 2c/2 π ideal

CubeHash-n (1024, 257, n) 1 2(1023−n)/2 P 16 ideal

Fugue-(n ≤ 256) (960, 32, n) m 2(928−n)/2 π, π′ ideal
Fugue-(n > 256) (1152, 32, n) m 2(1120−n)/2 π, π′ ideal
JH-n (1024, 512, n) m 2(512−n)/2 π ideal
Keccak-n (1600, s− 2n, n) s− 3n 2n π ideal
Lu�a-(n ≤ 256) (768, 256, 256) 0 2256 Q1‖ · · · ‖Q3 ideal
Lu�a-384 (1024, 256, 256) 0 2384 Q1‖ · · · ‖Q4 ideal
Lu�a-512 (1280, 256, 256) 0 2512 Q1‖ · · · ‖Q5 ideal

s = internal state, m = message injection, p = is digest extraction, n = output size
For SHA-3 candidates: n ∈ {224, 256, 384, 512}

• Moody et al. (2012): indi�erentiability of JH up to 2256 queries

• Design-speci�c proofs may result in better bounds

14 / 15



Implications for Existing Designs

Algorithm (s,m, p) d Indi�. q ≈ Assumption

Sponge (r + c, r, r) 0 2c/2 π ideal

Grindahl (s,m, n) m 2(s−m−n)/2 π ideal

Quark (r + c, r, r) 0 2c/2 π ideal

PHOTON-(r′≤ r) (r + c, r, r′) r − r′ 2c/2 π ideal

PHOTON-(r′≥ r) (r + c, r, r′) 0 2(c+r−r′)/2 π ideal

SPONGENT (r + c, r, r) 0 2c/2 π ideal

CubeHash-n (1024, 257, n) 1 2(1023−n)/2 P 16 ideal

Fugue-(n ≤ 256) (960, 32, n) m 2(928−n)/2 π, π′ ideal
Fugue-(n > 256) (1152, 32, n) m 2(1120−n)/2 π, π′ ideal
JH-n (1024, 512, n) m 2(512−n)/2 π ideal
Keccak-n (1600, s− 2n, n) s− 3n 2n π ideal
Lu�a-(n ≤ 256) (768, 256, 256) 0 2256 Q1‖ · · · ‖Q3 ideal
Lu�a-384 (1024, 256, 256) 0 2384 Q1‖ · · · ‖Q4 ideal
Lu�a-512 (1280, 256, 256) 0 2512 Q1‖ · · · ‖Q5 ideal

s = internal state, m = message injection, p = is digest extraction, n = output size
For SHA-3 candidates: n ∈ {224, 256, 384, 512}

• Moody et al. (2012): indi�erentiability of JH up to 2256 queries
• Design-speci�c proofs may result in better bounds

14 / 15



Conclusions

• Parazoa hash functions: a generalization of the sponge hash functions

• Parazoa functions cover a.o. sponges, Grindahl, PHOTON, and several

SHA-3 candidates

• Parazoa functions are proven indi�erentiable from RO

• Further research
• Tightness of the indi�erentiability bound?
• Improved collision/preimage resistance of the parazoa design?
• Generalization to animalia functions or eukaryota functions?

Thank you for your attention!

15 / 15



Insecure sponge-like design

What about the insecure sponge-like design?

• This insecure sponge-like design falls within the parazoa framework

• But parameter d = s− p, and thus s− d− p = 0

→ Our indi�erentiability result implies O(1) indi�erentiability bound

16 / 15



Insecure sponge-like design

What about the insecure sponge-like design?

• This insecure sponge-like design falls within the parazoa framework

• But parameter d = s− p, and thus s− d− p = 0

→ Our indi�erentiability result implies O(1) indi�erentiability bound

16 / 15


	Sponge Hash Functions
	Parazoa Hash Functions
	Security
	Conclusions

