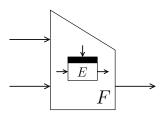
Indifferentiability of Double Length Compression Functions

Bart Mennink KU Leuven

IMA Cryptography and Coding December 18, 2013

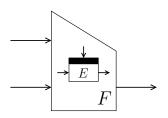
Block Cipher Based Hashing



2n-to-n-bit F using n-bit cipher E

- Davies-Meyer ('84), PGV ('93), . . .
- MD5 ('92), SHA-1 ('95), SHA-2 ('01), ...

Block Cipher Based Hashing



2n-to-n-bit F using n-bit cipher E

- Davies-Meyer ('84), PGV ('93), . . .
- MD5 ('92), SHA-1 ('95), SHA-2 ('01), ...

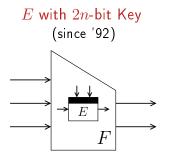
Same underlying primitive but larger compression function?

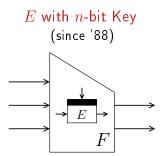
Double Block Length Hashing

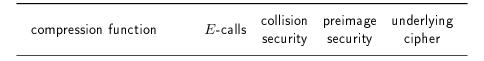
3n-to-2n-bit F still using n-bit cipher E

Double Block Length Hashing

3n-to-2n-bit F still using n-bit cipher E

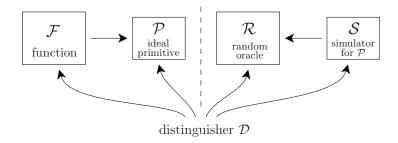




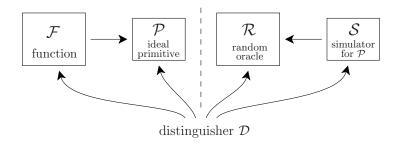


compression function	$\it E$ -calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	$\rightarrow E \rightarrow$
Hirose's ('06)	2	2^n	2^{2n}	
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	

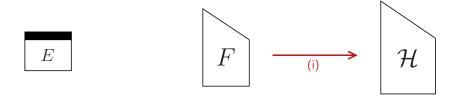
compression function	E-calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1 1
Abreast-DM (92)	2	2^n	2^{2n}	- -
Hirose's ('06)	2	2^n	2^{2n}	
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	
MDC-2 ('88)	2	$2^{n/2}$	2^n	
MJH ('11)	2	$2^{n/2}$	2^n	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	$\rightarrow E \rightarrow$
Ours ('12)	3	2^n	$2^{3n/2}$	n-bit key
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$	



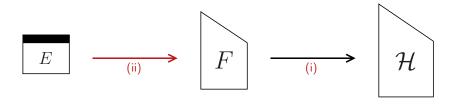
- ullet Indifferentiability of function ${\mathcal F}$ from a random oracle
- $\mathcal{F}^{\mathcal{P}}$ is indifferentiable from \mathcal{R} if \exists simulator \mathcal{S} such that $(\mathcal{F},\mathcal{P})$ and $(\mathcal{R},\mathcal{S})$ indistinguishable



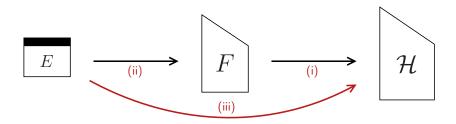
- ullet Indifferentiability of function ${\mathcal F}$ from a random oracle
- $\mathcal{F}^{\mathcal{P}}$ is indifferentiable from \mathcal{R} if \exists simulator \mathcal{S} such that $(\mathcal{F},\mathcal{P})$ and $(\mathcal{R},\mathcal{S})$ indistinguishable
- No structural design flaws
- Well-suited for composition



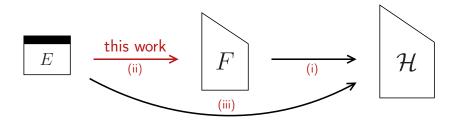
- (i) First hash-function indifferentiability results
 - ullet Chop-MD with ideal $F\longrightarrow \operatorname{indifferentiable}$



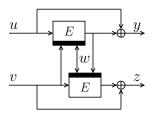
- (i) First hash-function indifferentiability results
 - Chop-MD with ideal $F \longrightarrow \text{indifferentiable}$
- (ii) Most obvious second step (composition)
 - ullet But Davies-Meyer with ideal $E\longrightarrow {\sf differentiable}$

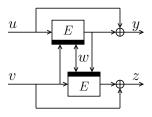


- (i) First hash-function indifferentiability results
 - Chop-MD with ideal $F \longrightarrow \text{indifferentiable}$
- (ii) Most obvious second step (composition)
 - ullet But Davies-Meyer with ideal $E\longrightarrow {\sf differentiable}$
- (iii) Researchers focus on direct proofs
 - ullet Chop-MD with Davies-Meyer and ideal $E\longrightarrow {\sf indifferentiable}$



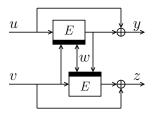
- (i) First hash-function indifferentiability results
 - Chop-MD with ideal $F \longrightarrow \text{indifferentiable}$
- (ii) Most obvious second step (composition)
 - ullet But Davies-Meyer with ideal $E\longrightarrow {\sf differentiable}$
- (iii) Researchers focus on direct proofs
 - ullet Chop-MD with Davies-Meyer and ideal $E\longrightarrow {\sf indifferentiable}$





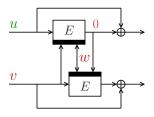
Tandem-DM differentiable from \mathcal{R} in 2 queries

Differentiability: construct a distinguisher that tricks any simulator



Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on $\mathrm{TDM}(u,v,w)=(u,z)$ for some u,v,w,z

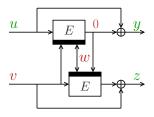


Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on TDM(u, v, w) = (u, z) for some u, v, w, z

Real world (TDM, E)

 \mathcal{D} queries $E^{-1}(\mathbf{v}||\mathbf{w},\mathbf{0}) \to u$

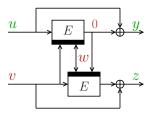


Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on TDM(u, v, w) = (u, z) for some u, v, w, z

Real world (TDM, E)

- \mathcal{D} queries $E^{-1}(\mathbf{v}||\mathbf{w},\mathbf{0}) \to u$
- \mathcal{D} queries $\mathrm{TDM}(u, \mathbf{v}, \mathbf{w}) \to (y, z)$

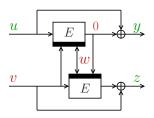


Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on $\mathrm{TDM}(u,v,w)=(u,z)$ for some u,v,w,z

Real world (TDM, E)

- \mathcal{D} queries $E^{-1}(\mathbf{v}||\mathbf{w},\mathbf{0}) \to u$
- \mathcal{D} queries $\mathrm{TDM}(u, \mathbf{v}, \mathbf{w}) \to (y, z)$
- u=y with probability $1\,$



Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on TDM(u, v, w) = (u, z) for some u, v, w, z

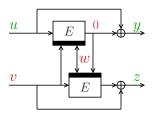
Real world (TDM, E)

 \mathcal{D} queries $E^{-1}(\boldsymbol{v}||\boldsymbol{w},\boldsymbol{0}) \rightarrow u$ \mathcal{D} queries $\mathrm{TDM}(u,\boldsymbol{v},\boldsymbol{w}) \rightarrow (y,z)$ u=y with probability 1

Simulated world $(\mathcal{R}, \mathcal{S})$

 \mathcal{D} queries $\mathcal{S}^{-1}(v||w,0) \to u$

 \mathcal{D} queries $\mathcal{R}(u, \mathbf{v}, \mathbf{w}) \to (y, z)$



Tandem-DM differentiable from \mathcal{R} in 2 queries

- Differentiability: construct a distinguisher that tricks any simulator
- Focus on TDM(u, v, w) = (u, z) for some u, v, w, z

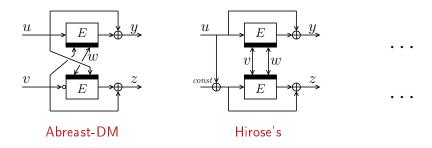
Real world (TDM, E)

 $\begin{array}{l} \mathcal{D} \text{ queries } E^{-1}(\pmb{v}\|\pmb{w},\pmb{0}) \rightarrow u \\ \mathcal{D} \text{ queries } \mathrm{TDM}(u,\pmb{v},\pmb{w}) \rightarrow (y,z) \\ u=y \text{ with probability } 1 \end{array}$

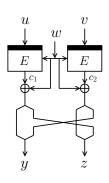
Simulated world $(\mathcal{R}, \mathcal{S})$

 \mathcal{D} queries $\mathcal{S}^{-1}(\mathbf{v} \| \mathbf{w}, \mathbf{0}) \to u$ \mathcal{D} queries $\mathcal{R}(u, \mathbf{v}, \mathbf{w}) \to (y, z)$ u = y with probability $O(1/2^n)$

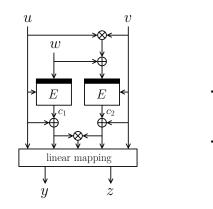
Many Constructions Differentiable: Other Schemes (1)



Many Constructions Differentiable: Other Schemes (2)



MDC-2

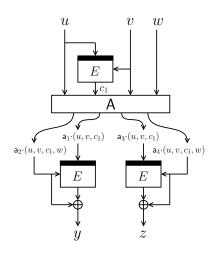


Jetchev-Özen-Stam's

compression function	E-calls	collision security	preimage security	indifferen- tiability	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	2	
Tandem-DM ('92)	2	2^n	2^{2n}	2	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	2	$\rightarrow E \rightarrow$
Hirose's ('06)	2	2^n	2^{2n}	2	$\frac{\mathbb{Z}}{2n}$ -bit key
Hirose-class ('04)	2	2^n	2^n	2	211-bit key
Özen-Stam-class ('09)	2	2^n	2^n	2	
MDC-2 ('88)	2	$2^{n/2}$	2^n	2	
MJH ('11)	2	$2^{n/2}$	2^n	2	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	2	\rightarrow E
Ours ('12)	3	2^n	$2^{3n/2}$		n-bit key
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$		

compression function	E-calls	collision security	preimage security	indifferen- tiability	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	2	
Tandem-DM ('92)	2	2^n	2^{2n}	2	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	2	$\rightarrow E \rightarrow$
Hirose's ('06)	2	2^n	2^{2n}	2	$\frac{\mathbb{Z}}{2n}$ -bit key
Hirose-class ('04)	2	2^n	2^n	2	211-bit key
Özen-Stam-class ('09)	2	2^n	2^n	2	
MDC-2 ('88)	2	$2^{n/2}$	2^n	2	
MJH ('11)	2	$2^{n/2}$	2^n	2	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	2	\rightarrow E
Ours ('12)	3	2^n	$2^{3n/2}$??	n-bit key
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$??	

Our Construction

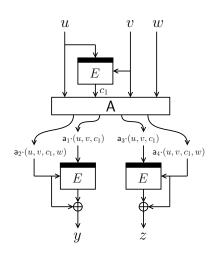


• F_A^3 indexed by matrix A:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

• Math over finite field $GF(2^n)$

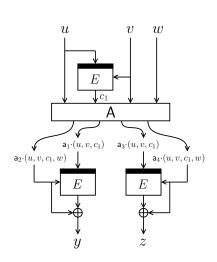
Our Construction



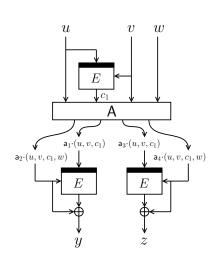
• F_A^3 indexed by matrix A:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

- Math over finite field $GF(2^n)$
- If A invertible and a_{24} , $a_{44} \neq 0$, any two E evaluations define (inputs to) third one



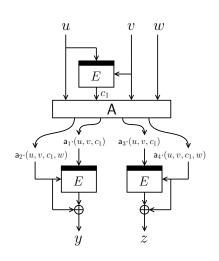
$$\mathbf{adv}_{F_{\mathsf{A}}^{3},\mathcal{S}}^{\mathrm{iff}}(q) = \Theta\left(\frac{q^{2}}{2^{n}}\right)$$



$$\mathbf{adv}^{\mathrm{iff}}_{F_{\mathsf{A}}^3,\mathcal{S}}(q) = \Theta\left(\frac{q^2}{2^n}\right)$$

Simulator S:

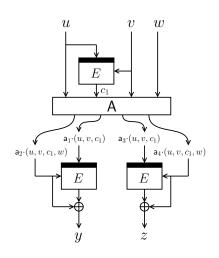
• "Look like E but comply with \mathcal{R} "



$$\mathbf{adv}_{F_{\mathsf{A}}^3,\mathcal{S}}^{\mathrm{iff}}(q) = \Theta\left(\frac{q^2}{2^n}\right)$$

Simulator S:

- "Look like E but comply with \mathcal{R} "
- If query at bottom for existing top query: consult $\mathcal R$
- ullet Otherwise: behave like ideal E



$$\mathbf{adv}_{F_{\mathsf{A}}^3,\mathcal{S}}^{\mathrm{iff}}(q) = \Theta\left(\frac{q^2}{2^n}\right)$$

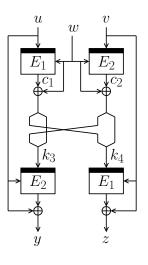
Simulator S:

- "Look like E but comply with \mathcal{R} "
- If query at bottom for existing top query: consult $\mathcal R$
- ullet Otherwise: behave like ideal E

\mathcal{S} fails if:

- 1) Top query hits bottom query
- 2) Top query hits other top query (in a₁ or a₃)

MDC-4



$$\mathbf{adv}^{\mathrm{iff}}_{\mathrm{MDC-4},\mathcal{S}}(q) = \Theta\left(\frac{q^2}{2^{n/2}}\right)$$

Simulator S:

• Based on same principles

Conclusions

compression function	E-calls	collision security	preimage security	indifferen- tiability	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	2	
Tandem-DM ('92)	2	2^n	2^{2n}	2	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	2	$\rightarrow E \rightarrow$
Hirose's ('06)	2	2^n	2^{2n}	2	$\frac{2n}{2n-bit}$ key
Hirose-class ('04)	2	2^n	2^n	2	ZII-DIT KEY
Özen-Stam-class ('09)	2	2^n	2^n	2	
MDC-2 ('88)	2	$2^{n/2}$	2^n	2	
MJH ('11)	2	$2^{n/2}$	2^n	2	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	2	\rightarrow E \rightarrow
Ours ('12)	3	2^n	$2^{3n/2}$	$2^{n/2}$	n-bit key
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$	$2^{n/4}$	

Research Directions

- 2-call scheme with comparable security?
- Impossibility results?
- Indifferentiability beyond $2^{n/2}$?
- Iteration?

Thank you for your attention!