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How to Build a MAC?

Full-state keyed sponge [BDP+12; MRV15; DMV17]
Very efficient

e No mode-level protection against side-channel attacks

Mixing of changing input with static secret enables, e.g., DPA [KJJ99]
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Limit the Data Complexity

e Single bit per static secret using GGM-like [GGM86] construction, e.g., [SPY+09]
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Speed-Up |
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e Use a nonce as proposed in, e.g., [TS14]
o Leakage resilience analysis in [DM19a]

e SCA resistance depends on uniqueness of nonce N
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Speed-Up II
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e Hash-then-PRF as proposed in, e.g., [USS+20]
o leakage-resilient-PRF G processes 2k-bit input for k-bit security
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e Use SuKS as proposed in [DEM+-17]
o Leakage-resilient-PRF G processes k-bit input for k-bit security
o Leakage resilience analysis in [DM19b]
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Security of SuKS
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o If Gisan XOR and k < r:

e Construction well-known [BDP+11]
e indifferentiability results applies [BDP+08]

e What if Gisa PRForif k > r?
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Bound by Dobraunig and Mennink [DM19b]
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e G is 2 %-uniform and 2 ¢-universal

® (j_. . smallest natural number x that Pr(u > x) < 3¢ [DMV17]
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Example Values

e Assume ASCON-like instance with ¢ =256, r =64, k =t = 128

e XOR as G: 2~ *_uniform and 0-universal

o 2N?> 5N 67N
AdvE (A) < —55 + 518 + o2
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Example Values

e Assume ASCON-like instance with ¢ =256, r =64, k =t = 128

e XOR as G: 2~ *_uniform and 0-universal

o 2N?> 5N 67N
AdvE (A) < —55 + 518 + o2

e PRF as G: 2 *-uniform and 2~ -universal

o 2N2 SN 67N
Advi™ (A) < 355 + o128 T 102

Can we find attacks in both cases?
Or can we improve the bound of [DM19b]?
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This Work

e Tightness of the suffix keyed sponge bound of [DM19b]
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This Work

e Tightness of the suffix keyed sponge bound of [DM19b]
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e First term non-surprising: inner collisions on hash part

n Tightness of the SuKS Bound



This Work

e Tightness of the suffix keyed sponge bound of [DM19b]
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e First term non-surprising: inner collisions on hash part
e Two attacks if XOR as G:

e s-collision based attack that matches third term
e s-collision based attack that matches second term
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This Work

e Tightness of the suffix keyed sponge bound of [DM19b]
2(N—q)
AdVET(A) < 2N? |ty N il N
VF = 92c omin{d.c} ob—t

First term non-surprising: inner collisions on hash part
Two attacks if XOR as G:

e s-collision based attack that matches third term

e u-collision based attack that matches second term
One attack if PRF as G:

e i-collision based attack that matches second term
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XOR as G: u-Collision on Tag
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XOR as G: u-Collision on Tag
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(1) g construction queries gives tags T; and corresponding U;
(2) Find a p-fold collision T in the tags T;
(3) Make N primitive queries p~(T||Z;) for varying Z;
(4) For outcome Y||right,_,(U;) compute the key K = Y & left,(U;)
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XOR as G: u-Collision on Tag
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e Idea: p-collision on T gives speed-up of p in search for right,_.(W;)
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XOR as G: u-Collision on Tag
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e Idea: p-collision on T gives speed-up of p in search for right,_.(W;)
e Parameters b = 256 and k = 128: e Complexity (g, N) ~ (21241, 2125:8)

e Huge online complexity
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XOR as G: u-Collision on Tag
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e Idea: p-collision on T gives speed-up of p in search for right,_.(W;)
e Parameters b = 256 and k = 128: e Complexity (g, N) ~ (21241, 2125:8)
e Huge online complexity

e Usually b > 2k due to first term of bound: third term not dominating
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XOR as G: u-Collision on right, ,(U;)
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XOR as G: u-Collision on right, ,(U;)
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(1) Find a p-fold collision U* in the right,_,(U;) (offline)
(2) Make p construction queries to get the corresponding T;
(3) Make primitive queries p(Z;||U*) for varying Z;
(4) For a match in T; compute K = Z; @ left,(U;)
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XOR as G:

u-Collision on right, ,(U;)
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p-collision on right,_, (U;) gives speed-up of p in search for left, (V)
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XOR as G: u-Collision on right, ,(U;)
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e Idea: p-collision on right,_,(U;) gives speed-up of u in search for left,(V})
e Parameters b = 272 and k = t = c/2 = 128: e Complexity (g, N) ~ (6,21259)

e Matching term in bound é%’g
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XOR as G: u-Collision on rig
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e Idea: p-collision on right,_,(U;) gives speed-up of u in search for left,(V})
e Parameters b = 272 and k = t = c/2 = 128: e Complexity (g, N) ~ (6,21259)
e Matching term in bound ;?—2’;’

e Parameters b =320 and k =t = ¢/2 = 128: e Complexity (g, N) ~ (2, 2127)

Matching term in bound 2 2128
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PRF as G: p-Collision on right, ,(U;)
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e Previous attack corresponded to recovering the key
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PRF as G: p-Collision on right, ,(U;)
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e Previous attack corresponded to recovering the key

e With hard-to-invert G, this is not necessarily possible
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PRF as G: p-Collision on right, ,(U;)
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e Previous attack corresponded to recovering the key
e With hard-to-invert G, this is not necessarily possible

e Still, p-collisions can be used to mount a forgery against SuKS
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PRF as G: p-Collision on
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2

Find a p-fold collision

U* in the right,_,(U;) (offline)

For each of these p plaintexts, find a collision in the leftx(U;) (offline)

4) Make primitive queries p(Z;||U*) for varying Z;

5

(1)
(2)
(3) Make p construction queries (of the u-collision) to get the corresponding T;
(4)
()

For a match in T;, use collision of step (2) to mount forgery
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PRF as G: p-Collision on right, ,(U;)
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PRF as G: p-Collision on right, ,(U;)
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e Parameters b =272 and k = t = ¢/2 = 128: e Complexity (q, N) ~ (5, 21?59)

e Matching term in bound ;?—2’}!
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PRF as G: p-Collision on right, ,(U;)
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e Parameters b =272 and k =t = ¢/2 = 128:

e Parameters b =320 and k =t = ¢/2 = 128:
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Complexity (g, N) ~ (5,21259)

Matching term in bound ;?—2’}!

Complexity (g, N) ~ (2,2%7)
Matching term in bound 251—%
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PRF as G: p-Collision on right, ,(U;)
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e Parameters b =272 and k =t = ¢/2 = 128:

e Parameters b =320 and k =t = ¢/2 = 128:

e Similar results as for XOR as G
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Complexity (g, N) ~ (5,21259)

Matching term in bound ;?—2’}!

Complexity (g, N) ~ (2,2%7)
Matching term in bound 251—%
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Conclusion

Tightness attacks: similar complexity if G is an XOR or a PRF

Multicollisions can be used in attacks as indicated by the bound

e More in paper: detailed attack complexity computation

Is there a better way to bound the multicollisions terms appearing in the bound?

Thank you for your attention!
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