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e Tweak: flexibility to the cipher

e Each tweak gives different permutation

e Dedicated constructions:

e Hasty Pudding Cipher [Sch98]

e Mercy [Cro01]
e Threefish [FLS+07]



Introduction: Modular Designs
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e LRW1 and LRW?2 by Liskov et al. [LRWO02]:
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e h is XOR-universal hash
e Related: XEX

e Secure up to 2/2 queries
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LRW2[p]: concatenation of p LRW2's
® ki,...,k, and hq,...,h, independent

e p=2: secure up to 22"/3 queries [LST12,Prol4]
p > 2 even: secure up to 2°™/(PT2) queries [LS13]

Conjecture: optimal 27/ (/1) security



Introduction: State of the Art

security key cost
scheme
(logy) length  F  ®/h

LRW1 n/2 n 2 0
LRW?2 n/2 2n 1 1
XEX n/2 n 2 0
LRW2[2] /3 4n 2 2
LRW2(p] pn/(p+2) 2pn p p

Optimal 2™ security only if key length and cost — 007
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Introduction: Tweak-Dependent Keys

Efficiency

tweak schedule lighter
than key schedule

A

Security

tweak schedule stronger

than key schedule

7

-~

Tweak and key change approximately equally expensive

e TWEAKEY [JNP14] key scheduling blends key and tweak
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Introduction: Tweak-Dependent Keys

e Minematsu [Min09]:

k

" Cll

m E

e Secure up to max{2"/2, 2"~ I!I} queries
e Beyond birthday bound for [t| < n/2
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Introduction: State of the Art

security key cost
scheme
(logy) length  E  ®/h  tdk

LRW1 n/2 n 2 0 0
LRW2 n/2 2n 1 1 0
XEX n/2 n 2 0 0
LRW2[2] /3 4n 2 2 0
LRW2[p] pn/(p+2) 2pn p p 0
Min max{n/2, n—|t|} n 2 0 1




Our Goal

Given a blockcipher F,
construct optimally secure tweakable blockcipher E

k

E

E

t ) all wires
carry n bits
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Generic Design

Elp] (for p > 1)

e Mixing functions A;, B;
o should be such that E[p] is invertible
e but can be anything otherwise
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Security Model

distinguisher D

o Information-theoretic indistinguishability

o 7 ideal tweakable cipher
e [ ideal cipher
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Security Model

distinguisher D

o Information-theoretic indistinguishability

o 7 ideal tweakable cipher
e [ ideal cipher

e Complexity-theoretic indistinguishability?
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One E-Call with Linear Mixing

Theorem

o If Ay, By, As are linear, E[l] can be distinguished from
7 in at most about 2"/2 queries

Proof idea

e Relation among queries to E[1]?

e Case distinction based on how k,t, m are processed
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Idea
2 o Subkey k@t
,L e Masking k@t
t k
1
m—d{ g b

F1)(k,t,m) =c
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One E-Call with Polynomial Mixing

F1)(k,t,m) =c

Idea
o Subkey k@t
e Masking k@t

Security
e Up to 22/3 queries

Cost
e One E-call
e One ®-evaluation

e One re-key
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e Key k is secret
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e Key k is secret
e Consider any construction query (¢,m,c)
e May “hit” any primitive query (I, z,v)

E@t=landm@kt=2r <<= k=Il@tandme(l®t)®

or or

t=uxa

kdt=land c®kR@t=y <= k=I®dtandcd(IPt)Rt=1y
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One E-Call with Polynomial Mixing: Proof Idea

t k
Pany
kot] !
1 Y
n—d e
maekRt cPkRt

e Key k is secret
e Consider any construction query (¢,m,c)
e May “hit” any primitive query (I, z,v)

kdt=landmdkRt=0 <+—

k=l@tandme (let)®

or or

keot=land cokt=y <= k=Iatandca(idt)xt=y
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One E-Call with Polynomial Mixing: Proof Idea

E=l@tandme(l@t)@t==x

Szemerédi-Trotter theorem [ST83]

Consider a finite field F. Let
e L C F? be a set of lines
e P C IF? be a set of points
# point-line incidences < min{|L|'/2|P| + |L|, |L||P|*/? +|P|}

Construction queries = lines

Primitive queries = points
About ¢%/2 solutions to m @ (I ®t) @t ==
Every solution fixes one [ @ ¢

k is random n-bit key
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Two E-Calls with Linear Mixing

Idea
2 o Subkey k@t
e Masking E(k,t)
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Two E-Calls with Linear Mixing

Idea
o Subkey k ®t
e Masking F(k,t)

t k Security

e Up to 2" queries

m —>@ E D—> ¢ Cost

e Two E-calls

F2](k,t,m)="c o Zero ®-evaluations
e One re-key
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Two E-Calls with Linear Mixing: Proof Idea
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Two E-Calls with Linear Mixing: Proof Idea
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Two E-Calls with Linear Mixing: Proof Idea

Y

Va 7S\ :

m N N D c
Z2@dm z2@Dc

e Construction query (t,m, c) “hits” primitive query ([, z,v) if

kdt=land z&m ==z
or
kdt=land z2c=y

e k is random key, z is almost-random subkey
17 /20



Comparison

<cheme security key cost
(logs) length E ®/h  tdk

LRW1 n/2 n 2 0 0
LRW2 n/2 m 1 1 0
XEX n/2 n 2 0 0
LRW2[2] 2n/3 4an 2 2 0
LRW2(p| pn/(p+2) 2pn p p 0
Min max{n/2, n—|t|} n 2 0 1
F[1] 2n/3* n 1 1 1
F[2] n* n 2 0 1

* Information-theoretic model
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Towards Complexity-Theoretic Model

Fla] with Fla] with ideal tweakable
any cipher I ideal cipher £ cipher 7

N

@-rk security of E current proof

e First step unnecessarily loose
e Tweak change influences key and message input

e Details in paper
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F[1] and F[2]
e Simple and few primitive calls
e High security level

e Efficient if key renewal is relatively cheap
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Conclusions

F[1] and F[2]
e Simple and few primitive calls
e High security level

e Efficient if key renewal is relatively cheap

Future Research
e One-call tweakable cipher with improved security?
e Avoiding related-key security condition?

¢ Implementations?

Thank you for your attention!
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Generic Design: Inverse

Valid Mixing Functions (informal)
A;, B; are valid if there is one A;« that processes m, s.t.

e first i* — 1 rounds computable in forward direction

e last p — (i* — 1) rounds computable in inverse direction
both without usage of m

Example for i* = 2




Both Designs on One Slide

4 z
’EL E
t k t k
—
m —> E D—> ¢ m —>p K D—> ¢
F[1](k,t,m) = ¢ F[2](k,t,m) = ¢
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