
Optimally Secure Tweakable Blockciphers

Bart Mennink

KU Leuven (Belgium)

Fast Software Encryption

March 10, 2015

1 / 20

Introduction
1 cipher

m cE

k

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation

• -

• Dedicated constructions:
• Hasty Pudding Cipher [Sch98]

• Mercy [Cro01]

• Three�sh [FLS+07]

2 / 20

Introduction
2 ciphertweakable

m

t

c

k

Ẽ

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation

• -

• Dedicated constructions:
• Hasty Pudding Cipher [Sch98]

• Mercy [Cro01]

• Three�sh [FLS+07]

2 / 20

Introduction
2 ciphertweakable

m

t

c

k

Ẽ

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation

• -

• Dedicated constructions:
• Hasty Pudding Cipher [Sch98]

• Mercy [Cro01]

• Three�sh [FLS+07]

2 / 20

Introduction: Modular Designs

• LRW1 and LRW2 by Liskov et al. [LRW02]:3 LRWother

m cE E

t

k k

2 LRW

m c

)

E

h(t) h(t)

k

• h is XOR-universal hash

• Related: XEX

• Secure up to 2n/2 queries

3 / 20

Introduction: Modular Designs
1 TXCE

m c· · · · · ·

h1(t) h1(t)⊕h2(t) hρ−1(t)⊕hρ(t) hρ(t)

E E E

k1 k2 kρ

• LRW2[ρ]: concatenation of ρ LRW2's

• k1, . . . , kρ and h1, . . . , hρ independent

• -

• ρ = 2: secure up to 22n/3 queries [LST12,Pro14]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [LS13]

• Conjecture: optimal 2ρn/(ρ+1) security

4 / 20

Introduction: Modular Designs
1 TXCE

m c· · · · · ·

h1(t) h1(t)⊕h2(t) hρ−1(t)⊕hρ(t) hρ(t)

E E E

k1 k2 kρ

• LRW2[ρ]: concatenation of ρ LRW2's

• k1, . . . , kρ and h1, . . . , hρ independent

• -

• ρ = 2: secure up to 22n/3 queries [LST12,Pro14]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [LS13]

• Conjecture: optimal 2ρn/(ρ+1) security

4 / 20

Introduction: State of the Art

scheme
security

(log2)

key

length

cost

E ⊗/h

LRW1 n/2 n 2 0

LRW2 n/2 2n 1 1

XEX n/2 n 2 0

LRW2[2] 2n/3 4n 2 2

LRW2[ρ] ρn/(ρ+2) 2ρn ρ ρ

max{n/2, n−|t|}

Optimal 2n security only if key length and cost →∞?

5 / 20

Introduction: Tweak-Dependent Keys

. .E�ciency

tweak schedule lighter

than key schedule

. .Security

tweak schedule stronger

than key schedule

Tweak and key change approximately equally expensive

• TWEAKEY [JNP14] key scheduling blends key and tweak

6 / 20

    

Introduction: Tweak-Dependent Keys

. .E�ciency

tweak schedule lighter

than key schedule

. .Security

tweak schedule stronger

than key schedule

Tweak and key change approximately equally expensive

• TWEAKEY [JNP14] key scheduling blends key and tweak

6 / 20

    

Introduction: Tweak-Dependent Keys

. .E�ciency

tweak schedule lighter

than key schedule

. .Security

tweak schedule stronger

than key schedule

Tweak and key change approximately equally expensive

• TWEAKEY [JNP14] key scheduling blends key and tweak

6 / 20

    

Introduction: Tweak-Dependent Keys

. .E�ciency

tweak schedule lighter

than key schedule

. .Security

tweak schedule stronger

than key schedule

Tweak and key change approximately equally expensive

• TWEAKEY [JNP14] key scheduling blends key and tweak

6 / 20

    

Introduction: Tweak-Dependent Keys

• Minematsu [Min09]:
4 Minematsu

m c

)

E

E

k

t‖0n−|t|

• Secure up to max{2n/2, 2n−|t|} queries
• Beyond birthday bound for |t| < n/2

7 / 20

Introduction: State of the Art

scheme
security

(log2)

key

length

cost

E ⊗/h tdk

LRW1 n/2 n 2 0 0

LRW2 n/2 2n 1 1 0

XEX n/2 n 2 0 0

LRW2[2] 2n/3 4n 2 2 0

LRW2[ρ] ρn/(ρ+2) 2ρn ρ ρ 0

Min max{n/2, n−|t|} n 2 0 1

8 / 20

Our Goal

Given a blockcipher E,

construct optimally secure tweakable blockcipher Ẽ1 goal

m

t

c
E

Ẽ

k

9 / 20

(
all wires

carry n bits

)

Generic Design

1 gentweak

m m m m c

E E E

A1 A2 A3 A4

B1 B2 B3

k, t k, t k, t, y1 k, t, y1, y2

l1

x1 y1

l2
x2 y2

l3

x3 y3

Ẽ[ρ] (for ρ ≥ 1)

• Mixing functions Ai, Bi
• should be such that Ẽ[ρ] is invertible
• but can be anything otherwise

10 / 20

Generic Design

1 gentweak

m m m m c

E E E

A1 A2 A3 A4

B1 B2 B3

k, t k, t k, t, y1 k, t, y1, y2

l1

x1 y1

l2
x2 y2

l3

x3 y3

Ẽ[ρ] (for ρ ≥ 1)

• Mixing functions Ai, Bi
• should be such that Ẽ[ρ] is invertible
• but can be anything otherwise

10 / 20

Security Model

ICẼ[ρ]±k E± π̃± E±

real world ideal world

distinguisher D

1

• Information-theoretic indistinguishability
• π̃ ideal tweakable cipher
• E ideal cipher

• Complexity-theoretic indistinguishability?

11 / 20

Security Model

ICẼ[ρ]±k E± π̃± E±

real world ideal world

distinguisher D

1

• Information-theoretic indistinguishability
• π̃ ideal tweakable cipher
• E ideal cipher

• Complexity-theoretic indistinguishability?

11 / 20

One E-Call with Linear Mixing
1 gentweak

m m c

E

A1 A2

B1

k, t

l1

x1 y1

Theorem

• If A1, B1, A2 are linear, Ẽ[1] can be distinguished from

π̃ in at most about 2n/2 queries

Proof idea

• Relation among queries to Ẽ[1]?

• Case distinction based on how k, t,m are processed

12 / 20

One E-Call with Linear Mixing
1 gentweak

m m c

E

A1 A2

B1

k, t

l1

x1 y1

Theorem

• If A1, B1, A2 are linear, Ẽ[1] can be distinguished from

π̃ in at most about 2n/2 queries

Proof idea

• Relation among queries to Ẽ[1]?

• Case distinction based on how k, t,m are processed

12 / 20

One E-Call with Linear Mixing
1 gentweak

m m c

E

A1 A2

B1

k, t

l1

x1 y1

Theorem

• If A1, B1, A2 are linear, Ẽ[1] can be distinguished from

π̃ in at most about 2n/2 queries

Proof idea

• Relation among queries to Ẽ[1]?

• Case distinction based on how k, t,m are processed

12 / 20

One E-Call with Polynomial Mixing
2 FME

m c

kt

z

E

F̃ [1](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking k ⊗ t

Security

• Up to 22n/3 queries

Cost

• One E-call

• One ⊗-evaluation
• One re-key

13 / 20

One E-Call with Polynomial Mixing
2 FME

m c

kt

z

E

F̃ [1](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking k ⊗ t

Security

• Up to 22n/3 queries

Cost

• One E-call

• One ⊗-evaluation
• One re-key

13 / 20

One E-Call with Polynomial Mixing
2 FME

m c

kt

z

E

F̃ [1](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking k ⊗ t

Security

• Up to 22n/3 queries

Cost

• One E-call

• One ⊗-evaluation
• One re-key

13 / 20

One E-Call with Polynomial Mixing: Proof Idea

1 FME0

k

E

• Key k is secret

• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

2 FME1
ts

k

Em c

t

• Key k is secret
• Consider any construction query (t,m, c)

• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

3 FME2

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

• Key k is secret
• Consider any construction query (t,m, c)

• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

4 FME3

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

x y

l

• Key k is secret
• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

4 FME3

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

x y

l

• Key k is secret
• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

4 FME3

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

x y

l

• Key k is secret
• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x

⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

or

or

k ⊕ t = l and c⊕ k ⊗ t = y

⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

4 FME3

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

x y

l

• Key k is secret
• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x ⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

4 FME3

k

Em c

t

m⊕ k ⊗ t c⊕ k ⊗ t

k ⊕ t

x y

l

• Key k is secret
• Consider any construction query (t,m, c)
• May �hit� any primitive query (l, x, y)

k ⊕ t = l and m⊕ k ⊗ t = x ⇐⇒ k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x
or or

k ⊕ t = l and c⊕ k ⊗ t = y ⇐⇒ k = l ⊕ t and c⊕ (l ⊕ t)⊗ t = y

14 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t
• k is random n-bit key

15 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t
• k is random n-bit key

15 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t
• k is random n-bit key

15 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t
• k is random n-bit key

15 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t

• k is random n-bit key

15 / 20

One E-Call with Polynomial Mixing: Proof Idea

k = l ⊕ t and m⊕ (l ⊕ t)⊗ t = x

Szemerédi-Trotter theorem [ST83]

Consider a �nite �eld F. Let
• L ⊆ F2 be a set of lines

• P ⊆ F2 be a set of points

point-line incidences ≤ min{|L|1/2|P |+ |L|, |L||P |1/2+ |P |}

• Construction queries = lines

• Primitive queries = points

• About q3/2 solutions to m⊕ (l ⊕ t)⊗ t = x

• Every solution �xes one l ⊕ t
• k is random n-bit key

15 / 20

Two E-Calls with Linear Mixing
1 FEE

m c

kt

z

E

E

F̃ [2](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking E(k, t)

Security

• Up to 2n queries

Cost

• Two E-calls

• Zero ⊗-evaluations
• One re-key

16 / 20

Two E-Calls with Linear Mixing
1 FEE

m c

kt

z

E

E

F̃ [2](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking E(k, t)

Security

• Up to 2n queries

Cost

• Two E-calls

• Zero ⊗-evaluations
• One re-key

16 / 20

Two E-Calls with Linear Mixing
1 FEE

m c

kt

z

E

E

F̃ [2](k, t,m) = c

Idea

• Subkey k ⊕ t
• Masking E(k, t)

Security

• Up to 2n queries

Cost

• Two E-calls

• Zero ⊗-evaluations
• One re-key

16 / 20

Two E-Calls with Linear Mixing: Proof Idea

1 FEE0

k

E

E

• Construction query (t,m, c) �hits� primitive query (l, x, y) if

k ⊕ t = l and z ⊕m = x
or

k ⊕ t = l and z ⊕ c = y

• k is random key, z is almost-random subkey

17 / 20

Two E-Calls with Linear Mixing: Proof Idea

2 FEE1

k

E

E

z

m c

t

z ⊕m z ⊕ c

k ⊕ t

x y

l

• Construction query (t,m, c) �hits� primitive query (l, x, y) if

k ⊕ t = l and z ⊕m = x
or

k ⊕ t = l and z ⊕ c = y

• k is random key, z is almost-random subkey

17 / 20

Two E-Calls with Linear Mixing: Proof Idea

2 FEE1

k

E

E

z

m c

t

z ⊕m z ⊕ c

k ⊕ t

x y

l

• Construction query (t,m, c) �hits� primitive query (l, x, y) if

k ⊕ t = l and z ⊕m = x
or

k ⊕ t = l and z ⊕ c = y

• k is random key, z is almost-random subkey
17 / 20

Comparison

scheme
security

(log2)

key

length

cost

E ⊗/h tdk

LRW1 n/2 n 2 0 0

LRW2 n/2 2n 1 1 0

XEX n/2 n 2 0 0

LRW2[2] 2n/3 4n 2 2 0

LRW2[ρ] ρn/(ρ+2) 2ρn ρ ρ 0

Min max{n/2, n−|t|} n 2 0 1

F̃ [1] 2n/3 ? n 1 1 1

F̃ [2] n ? n 2 0 1

18 / 20

? Information-theoretic model

Towards Complexity-Theoretic Model

. .F̃ [α] with
any cipher E

. .F̃ [α] with
ideal cipher E

. .ideal tweakable

cipher π̃

⊕-rk

security of E

current proof .

• First step unnecessarily loose

• Tweak change in�uences key and message input

• Details in paper

19 / 20

Towards Complexity-Theoretic Model

. .F̃ [α] with
any cipher E

. .F̃ [α] with
ideal cipher E

. .ideal tweakable

cipher π̃

⊕-rk

security of E

current proof .

• First step unnecessarily loose

• Tweak change in�uences key and message input

• Details in paper

19 / 20

Towards Complexity-Theoretic Model

. .F̃ [α] with
any cipher E

. .F̃ [α] with
ideal cipher E

. .ideal tweakable

cipher π̃

⊕-rk

security of E current proof .

• First step unnecessarily loose

• Tweak change in�uences key and message input

• Details in paper

19 / 20

Towards Complexity-Theoretic Model

. .F̃ [α] with
any cipher E

. .F̃ [α] with
ideal cipher E

. .ideal tweakable

cipher π̃

⊕-rk security of E current proof .

• First step unnecessarily loose

• Tweak change in�uences key and message input

• Details in paper

19 / 20

Towards Complexity-Theoretic Model

. .F̃ [α] with
any cipher E

. .F̃ [α] with
ideal cipher E

. .ideal tweakable

cipher π̃

⊕-rk security of E current proof .

• First step unnecessarily loose

• Tweak change in�uences key and message input

• Details in paper

19 / 20

Conclusions

F̃ [1] and F̃ [2]

• Simple and few primitive calls

• High security level

• E�cient if key renewal is relatively cheap

Future Research

• One-call tweakable cipher with improved security?

• Avoiding related-key security condition?

• Implementations?

Thank you for your attention!

20 / 20

Conclusions

F̃ [1] and F̃ [2]

• Simple and few primitive calls

• High security level

• E�cient if key renewal is relatively cheap

Future Research

• One-call tweakable cipher with improved security?

• Avoiding related-key security condition?

• Implementations?

Thank you for your attention!

20 / 20

Conclusions

F̃ [1] and F̃ [2]

• Simple and few primitive calls

• High security level

• E�cient if key renewal is relatively cheap

Future Research

• One-call tweakable cipher with improved security?

• Avoiding related-key security condition?

• Implementations?

Thank you for your attention!

20 / 20

Supporting Slides

SUPPORTING SLIDES

21 / 20

Generic Design: Inverse

Valid Mixing Functions (informal)

Ai, Bi are valid if there is one Ai∗ that processes m, s.t.

• �rst i∗ − 1 rounds computable in forward direction

• last ρ− (i∗ − 1) rounds computable in inverse direction

both without usage of m

Example for i∗ = 22 gentweakinv

m c

E E E

Â1 A-1
2 Â-1

3 Â-1
4

B1 B2 B̂3

k, t k, t k, t, y1 k, t, y1

l1

x1 y1

l2

x2 y2

l3

x3 y3

22 / 20

Both Designs on One Slide

2 FME

m c

kt

z

E

F̃ [1](k, t,m) = c

1 FEE

m c

kt

z

E

E

F̃ [2](k, t,m) = c

23 / 20

	Introduction
	Generic Design
	One Blockcipher Call
	Two Blockcipher Calls
	Comparison
	Conclusions

