Beyond Birthday-Bound Security

Bart Mennink Radboud University (The Netherlands)

Summer school on real-world crypto and privacy

June 8, 2017

Birthday Paradox

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

Kappy Birthday

Birthday Paradox

KAPPY BIRTHDAY

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

- Consider space $S = \{0, 1\}^n$
- ullet Randomly draw q elements from ${\cal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathsf{collisions}\right] = \binom{q}{2}/2^n$$

Birthday Paradox

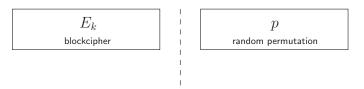
For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

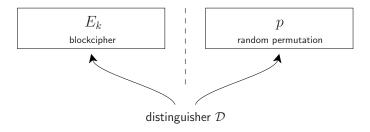
- Consider space $S = \{0, 1\}^n$
- ullet Randomly draw q elements from ${\cal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathrm{collisions}\right] = \binom{q}{2}/2^n$$

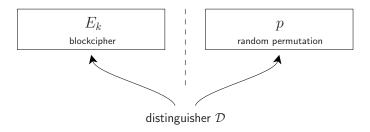
Important phenomenon in cryptography



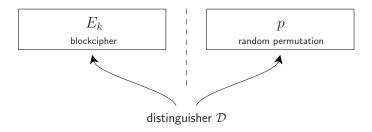
 \bullet Two oracles: E_k (for secret random key k) and p



- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p



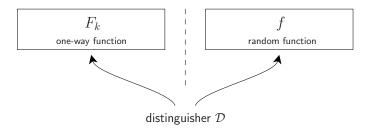
- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\mathcal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with



- ullet Two oracles: E_k (for secret random key k) and p
- ullet Distinguisher ${\cal D}$ has query access to either E_k or p
- ullet ${\cal D}$ tries to determine which oracle it communicates with

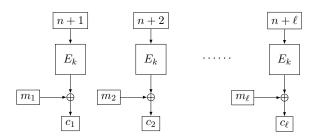
$$\mathbf{Adv}_{E}^{\mathrm{prp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{E_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^p = 1 \right] \right|$$

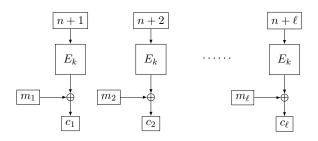
Pseudorandom Function



- ullet Two oracles: F_k (for secret random key k) and f
- ullet Distinguisher ${\mathcal D}$ has query access to either F_k or f
- ullet ${\cal D}$ tries to determine which oracle it communicates with

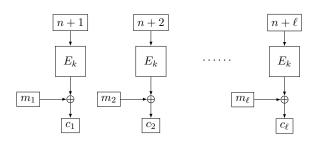
$$\mathbf{Adv}_F^{\mathrm{prf}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{F_k} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^f = 1 \right] \right|$$





Security bound:

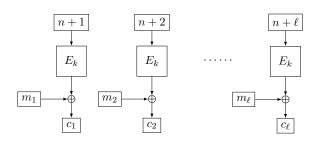
$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$



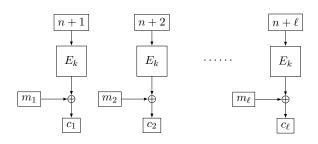
Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(\sigma) + \binom{\sigma}{2}/2^{n}$$

- $\mathsf{CTR}[E]$ is secure as long as:
 - E_k is a secure PRP
 - Number of encrypted blocks $\sigma \ll 2^{n/2}$



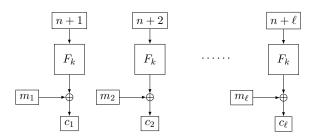
- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string



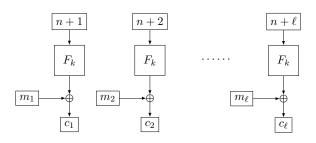
- $m_i \oplus c_i$ is distinct for all σ blocks
- Unlikely to happen for random string
- Distinguishing attack in $\sigma \approx 2^{n/2}$ blocks:

$$\binom{\sigma}{2}/2^n \lesssim \mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[E]}(\sigma)$$

Counter Mode Based on Pseudorandom Function



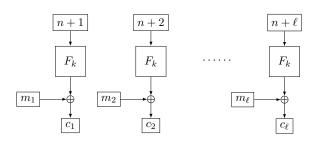
Counter Mode Based on Pseudorandom Function



• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

Counter Mode Based on Pseudorandom Function

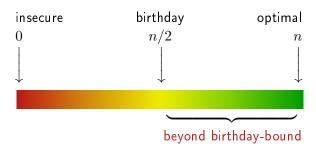


• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[F]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_F(\sigma)$$

- $\mathsf{CTR}[F]$ is secure as long as F_k is a secure PRF
- Birthday bound security loss disappeared

Beyond Birthday-Bound Security



Disclaimer

Beyond birthday-bound $\not\leftarrow$ Better security

Disclaimer

Beyond birthday-bound $\not\leftarrow$ Better security

- n large enough: birthday-bound security is okay
 - --> Permutation-based constructions
- n too small: birthday-bound security could be bogus
 - Lightweight blockciphers at risk

Disclaimer

Beyond birthday-bound $\stackrel{\longleftarrow}{\Rightarrow}$ Better security

- n large enough: birthday-bound security is okay
 - --> Permutation-based constructions
- n too small: birthday-bound security could be bogus
 - Lightweight blockciphers at risk
- ullet Beyond birthday-bound: relevant if n/2 is on the edge

Sweet32 Attack

On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN

Bhargavan, Leurent, ACM CCS 2016

- TLS supported Triple-DES
- OpenVPN used Blowfish
- Both Blowfish and Triple-DES have 64-bit state
- Practical birthday-bound attack on encryption mode

Outline

PRP-PRF Conversion

Conclusion

Outline

PRP-PRF Conversion

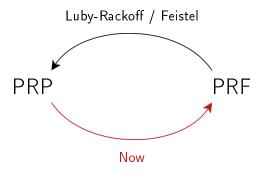
Conclusion

PRP-PRF Conversion

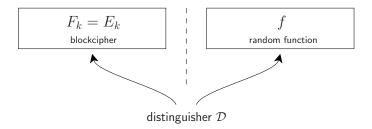
PRP PRF

PRP-PRF Conversion

PRP-PRF Conversion



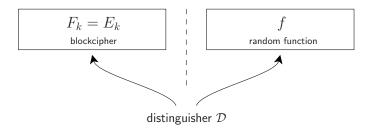
Naive PRP-PRF Conversion



PRP-PRF Switch

ullet Simply view E_k as a PRF

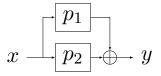
Naive PRP-PRF Conversion



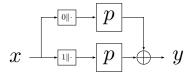
PRP-PRF Switch

- Simply view E_k as a PRF
- E_k does not expose collisions but f does
- ullet E_k can be distinguished from f in $pprox 2^{n/2}$ queries

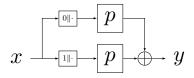
$$\binom{q}{2}/2^n \lesssim \mathbf{Adv}_E^{\mathrm{prf}}(q) \leq \mathbf{Adv}_E^{\mathrm{prp}}(q) + \binom{q}{2}/2^n$$



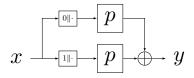
• First suggested by Bellare et al. [BKR98]



• First suggested by Bellare et al. [BKR98]



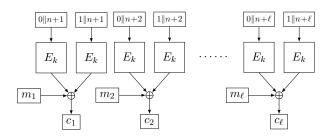
- First suggested by Bellare et al. [BKR98]
- Lucks [Luc00]: $2^{2n/3}$
- Bellare and Impagliazzo [BI99]: $2^n/n^{2/3}$
- Patarin [Pat08]: 2^n



- First suggested by Bellare et al. [BKR98]
- Lucks [Luc00]: $2^{2n/3}$
- Bellare and Impagliazzo [BI99]: $2^n/n^{2/3}$
- Patarin [Pat08]: 2^n

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \mathbf{Adv}^{\mathrm{prp}}_{E}(2q) + q/2^{n}$$

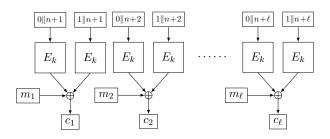
Counter Mode Based on XoP



• Security bound:

$$\mathbf{Adv}^{\mathrm{cpa}}_{\mathsf{CTR}[\mathsf{XoP}]}(\sigma) \leq \mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(\sigma)$$

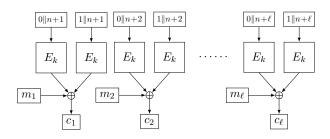
Counter Mode Based on XoP



• Security bound:

$$\begin{aligned} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathrm{cpa}}(\sigma) &\leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathrm{prf}}(\sigma) \\ &\leq \mathbf{Adv}_{E}^{\mathrm{prp}}(2\sigma) + \sigma/2^{n} \end{aligned}$$

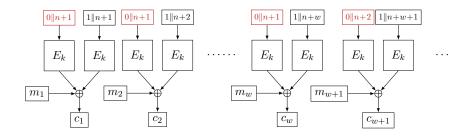
Counter Mode Based on XoP



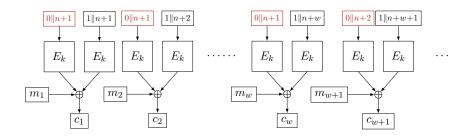
• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathsf{cpa}}(\sigma) \leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathsf{prf}}(\sigma)$$
$$\leq \mathbf{Adv}_{E}^{\mathsf{prp}}(2\sigma) + \sigma/2^{n}$$

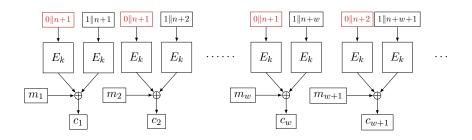
ullet Beyond birthday-bound but 2x as expensive as $\mathsf{CTR}[E]$



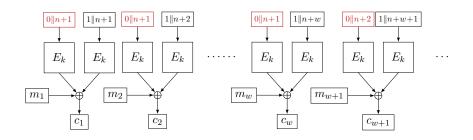
 \bullet One subkey used for $w \geq 1$ encryptions



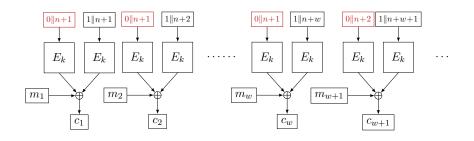
- ullet One subkey used for $w\geq 1$ encryptions
- $\bullet \ \, \mathsf{Almost} \,\, \mathsf{as} \,\, \mathsf{expensive} \,\, \mathsf{as} \,\, \mathsf{CTR}[E] \\$



- ullet One subkey used for $w\geq 1$ encryptions
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- ullet 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]



- $\bullet \ \, \hbox{One subkey used for} \,\, w \geq 1 \,\, \hbox{encryptions} \\$
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]



- $\bullet \ \, \hbox{One subkey used for} \,\, w \geq 1 \,\, \hbox{encryptions} \\$
- ullet Almost as expensive as $\mathsf{CTR}[E]$
- 2006: $2^{2n/3}$ security, $2^n/w$ conjectured [Iwa06]
- 2016: $2^n/w$ security [IMV16]
 - Well, we did not really prove it ourselves
 - Immediate consequence of mirror theory from 2005

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} o \{1,\ldots,r\}$

System of Equations

- Consider r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- ullet Consider a system of q equations of the form:

$$P_{a_1} \oplus P_{b_1} = \lambda_1$$

$$P_{a_2} \oplus P_{b_2} = \lambda_2$$

$$\vdots$$

$$P_{a_q} \oplus P_{b_q} = \lambda_q$$

for some surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\}\to\{1,\ldots,r\}$

Goal

• Lower bound on the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$

Patarin's Result

• Extremely powerful lower bound

Patarin's Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Patarin's Result

- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	ePrint 2010/287	ΧoP	concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Iwata, Mennink, Vizár	ePrint 2016/1087	CENC	

Patarin's Result

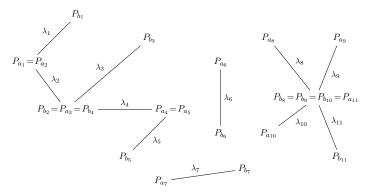
- Extremely powerful lower bound
- Has remained rather unknown since introduction (2003)

Authors	Publication	Application	Mirror Bound
Patarin	CRYPTO 2003	Feistel	suboptimal
Patarin	CRYPTO 2004	Feistel	
Patarin	ICISC 2005	Feistel	optimal in $\mathcal{O}(\cdot)$
Patarin, Montreuil	ICISC 2005	Benes	
Patarin	ICITS 2008	ΧoP	
Patarin	ePrint 2010/287	XoP	concrete bound
Patarin	ePrint 2010/293	Feistel	
Patarin	ePrint 2013/368	ΧoP	
Cogliati, Lampe, Patarin	FSE 2014	XoP^d	
Volte, Nachef, Marrière	ePrint 2016/136	Feistel	
Iwata, Mennink, Vizár	ePrint 2016/1087	CENC	

System of Equations

- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi: \{a_1, b_1, \dots, a_q, b_q\} \rightarrow \{1, \dots, r\}$

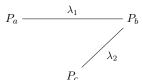
Graph Based View



• System of equations:

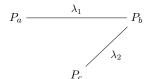
$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$



• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$

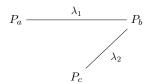


If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- ullet Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$



If
$$\lambda_1=0$$
 or $\lambda_2=0$ or $\lambda_1=\lambda_2$

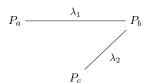
- Contradiction: $P_a=P_b$ or $P_b=P_c$ or $P_a=P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

• 2^n choices for P_a

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$



If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

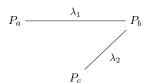
- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If
$$\lambda_1,\lambda_2
eq 0$$
 and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_b \oplus P_c = \lambda_2$$



If $\lambda_1=0$ or $\lambda_2=0$ or $\lambda_1=\lambda_2$

- Contradiction: $P_a = P_b$ or $P_b = P_c$ or $P_a = P_c$
- Scheme is degenerate

If $\lambda_1,\lambda_2
eq 0$ and $\lambda_1
eq \lambda_2$

- 2^n choices for P_a
- Fixes $P_b = \lambda_1 \oplus P_a$ (which is $\neq P_a$ as desired)
- Fixes $P_c = \lambda_2 \oplus P_b$ (which is $\neq P_a, P_b$ as desired)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{cccc} \lambda_1 & & & P_a \\ \hline P_c & & & \lambda_2 & & P_a \end{array}$$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{cccc} \lambda_1 & & P_c \\ \hline P_c & & \lambda_2 & & P_c \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_t \\ P_c & \lambda_2 & P_c \end{array}$$

If
$$\lambda_1=0$$
 or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

• 2^n choices for P_a (which fixes P_b)

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_b \\ P_c & \lambda_2 & P_c \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$

• System of equations:

$$P_a \oplus P_b = \lambda_1$$
$$P_c \oplus P_d = \lambda_2$$

$$P_a = \begin{array}{ccc} \lambda_1 & P_t \\ P_c & \lambda_2 & P_a \end{array}$$

If $\lambda_1=0$ or $\lambda_2=0$

- Contradiction: $P_a = P_b$ or $P_b = P_c$
- Scheme is degenerate

If
$$\lambda_1, \lambda_2 \neq 0$$

- 2^n choices for P_a (which fixes P_b)
- For P_c and P_d we require
 - $P_c \neq P_a, P_b$
 - $P_d = \lambda_2 \oplus P_c \neq P_a, P_b$
- At least $2^n 4$ choices for P_c (which fixes P_d)

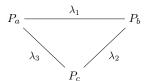
• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$



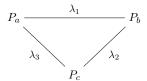
• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$



If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

- Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

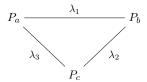
• System of equations:

$$P_a \oplus P_b = \lambda_1$$

$$P_b \oplus P_c = \lambda_2$$

$$P_c \oplus P_a = \lambda_3$$

• Assume $\lambda_i \neq 0$ and $\lambda_i \neq \lambda_j$



If $\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \neq 0$

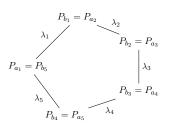
- ullet Contradiction: equations sum to $0=\lambda_1\oplus\lambda_2\oplus\lambda_3$
- Scheme contains a circle

If
$$\lambda_1 \oplus \lambda_2 \oplus \lambda_3 = 0$$

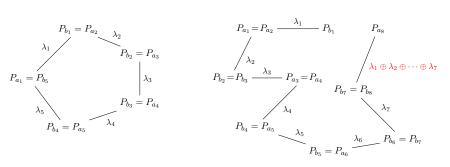
- One redundant equation, no contradiction
- Still counted as circle

Mirror Theory: Two Problematic Cases

Circle



Degeneracy



Mirror Theory: Main Result

System of Equations

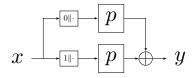
- r distinct unknowns $\mathcal{P} = \{P_1, \dots, P_r\}$
- System of equations $P_{a_i} \oplus P_{b_i} = \lambda_i$
- Surjection $\varphi:\{a_1,b_1,\ldots,a_q,b_q\} \to \{1,\ldots,r\}$

Main Result

If the system of equations is circle-free and non-degenerate, the number of solutions to $\mathcal P$ such that $P_a \neq P_b$ for all distinct $a,b \in \{1,\ldots,r\}$ is at least

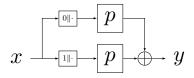
$$\frac{(2^n)_r}{2^{nq}}$$

provided the maximum tree size ξ satisfies $(\xi-1)^2 \cdot r \leq 2^n/67$



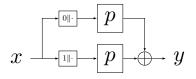
General Setting

ullet Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$



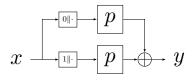
General Setting

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$



General Setting

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i\mapsto p(0\|x_i)=:P_{a_i}$ and $x_i\mapsto p(1\|x_i)=:P_{b_i}$
- ullet System of q equations $P_{a_i}\oplus P_{b_i}=y_i$



General Setting

- Adversary gets transcript $au = \{(x_1,y_1),\ldots,(x_q,y_q)\}$
- Each tuple corresponds to $x_i \mapsto p(0||x_i) =: P_{a_i}$ and $x_i \mapsto p(1||x_i) =: P_{b_i}$
- System of q equations $P_{a_i} \oplus P_{b_i} = y_i$
- Inputs to p are all distinct: 2q unknowns

Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- ullet Non-degenerate: provided that $y_i
 eq 0$ for all i
 - → Call this a bad transcript
- Maximum tree size 2

Applying Mirror Theory

- \bullet Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i \longrightarrow Call this a bad transcript
- Maximum tree size 2
- If $2q \leq 2^n/67$: at least $\frac{(2^n)_{2q}}{2^{nq}}$ solutions to unknowns

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f\right]$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}_{\mathsf{XoP}}^{\mathrm{prf}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - ullet $\mathbf{Pr}\left[\mathsf{bad} \ \mathsf{transcript} \ \mathsf{for} \ f\right] = q/2^n$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $f]=q/2^n$
- For any good transcript:
 - ullet $\Pr\left[\mathsf{XoP} \; \mathsf{gives} \; au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:
 - $\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ au
 ight] \geq rac{(2^n)_{2q}}{2^{nq}} \cdot rac{1}{(2^n)_{2q}}$
 - $\mathbf{Pr}\left[f \text{ gives } \tau\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

Then, $\mathbf{Adv}_{\mathbf{Y} \circ \mathbf{P}}^{\mathrm{prf}}(q) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$ transcript for f

- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

H-Coefficient Technique [Pat91,Pat08,CS14]

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathsf{XoP}\ \mathsf{gives}\ \tau\right]}{\mathbf{Pr}\left[f\ \mathsf{gives}\ \tau\right]} \geq 1 - \varepsilon$$

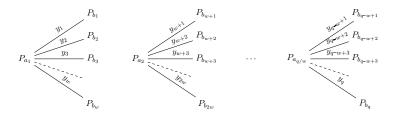
Then, $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } f\right]$

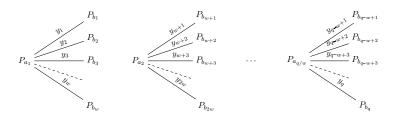
- Bad transcript: if $y_i = 0$ for some i
 - $\mathbf{Pr}[\mathsf{bad}]$ transcript for $f] = q/2^n$
- For any good transcript:

•
$$\Pr\left[\mathsf{XoP\ gives\ } au\right] \geq \frac{(2^n)_{2q}}{2^{nq}} \cdot \frac{1}{(2^n)_{2q}}$$

• $\Pr\left[f\ \mathsf{gives\ } au\right] = \frac{1}{2^{nq}}$

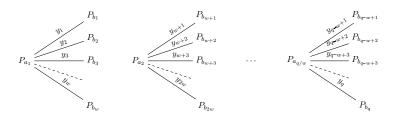
$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q) \le q/2^n$$





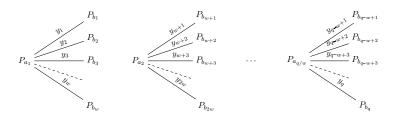
Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1



Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- ullet Non-degenerate: provided that $y_i
 eq 0$ for all i and $y_i
 eq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1
- If $2w^2q \leq 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns



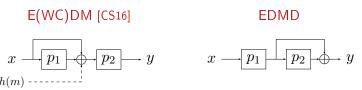
Applying Mirror Theory

- Circle-free: no collisions in inputs to p
- Non-degenerate: provided that $y_i \neq 0$ for all i and $y_i \neq y_j$ within all w-blocks
 - → Call this a bad transcript
- Maximum tree size w+1
- If $2w^2q \le 2^n/67$: at least $\frac{(2^n)_r}{2^{nq}}$ solutions to unknowns
- H-coefficient technique: $\mathbf{Adv}^{\text{cpa}}_{\mathsf{CENC}}(q) \leq q/2^n + wq/2^{n+1}$

New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory Mennink, Neves, CRYPTO 2017

- Refurbish and modernize mirror theory
- Prove optimal PRF security of:



Proofs are more involved and beyond scope of presentation

Outline

PRP-PRF Conversion

Conclusion

Conclusion

Beyond Birthday-Bound Security

- Not the holy grail
- Relevant for certain applications
- Often achieved using
 - Extra randomness
 - Extra state size

Challenges

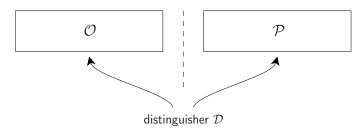
- Trade-off between security and efficiency
- Many open problems in BBB security
 - Existing analyses not always tight

Thank you for your attention!

SUPPORTING SLIDES

Indistinguishability

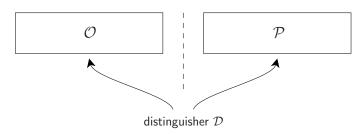
Indistinguishability of Random Systems



$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O} \; ; \; \mathcal{P})$$

Indistinguishability

Indistinguishability of Random Systems

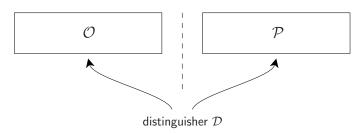


$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O} \; ; \; \mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

Indistinguishability

Indistinguishability of Random Systems



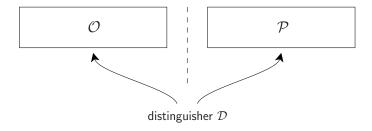
$$\mathbf{Adv}^{\mathrm{ind}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\mathcal{O}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\mathcal{P}} = 1 \right] \right| = \Delta_{\mathcal{D}}(\mathcal{O}; \mathcal{P})$$

How to Prove that $Adv^{ind}(\mathcal{D})$ is Small?

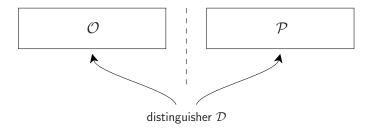
- Game-playing technique
- H-coefficient technique

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]

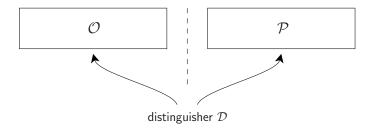


- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]



- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps

- Bellare and Rogaway [BR06]
- Similar to Maurer's methodology [Mau02]



- Basic idea:
 - ullet From ${\mathcal O}$ to ${\mathcal P}$ in small steps
 - Intermediate steps (presumably) easy to analyze

Triangle Inequality

Fundamental Lemma

Triangle Inequality

$$\Delta(\mathcal{O};\mathcal{P}) \leq \Delta(\mathcal{O};\mathcal{R}) + \Delta(\mathcal{R};\mathcal{P})$$

Fundamental Lemma

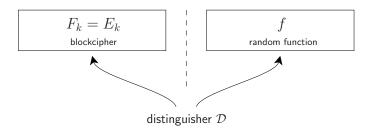
Triangle Inequality

$$\Delta(\mathcal{O};\mathcal{P}) \leq \Delta(\mathcal{O};\mathcal{R}) + \Delta(\mathcal{R};\mathcal{P})$$

Fundamental Lemma

If $\mathcal O$ and $\mathcal P$ are identical until bad, then:

$$\Delta(\mathcal{O}; \mathcal{P}) \leq \mathbf{Pr}\left[\mathcal{P} \text{ sets bad}\right]$$



Theorem

For any distinguisher ${\mathcal D}$ making Q queries to E_k/p and T offline evaluations

$$\Delta_{\mathcal{D}}(E_k; f) \leq \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D}) + \frac{\binom{Q}{2}}{2^n}$$

 $\Delta_{\mathcal{D}}(E_k;f)$

Step 1. "Replace" E_k by Random Permutation p

 $\Delta_{\mathcal{D}}(E_k;f)$

Step 1. "Replace" E_k by Random Permutation p

• Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

Step 1. "Replace" E_k by Random Permutation p

Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

• $\Delta_{\mathcal{D}}(E_k; p) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition

Step 1. "Replace" E_k by Random Permutation p

Triangle inequality:

$$\Delta_{\mathcal{D}}(E_k; f) \leq \Delta_{\mathcal{D}}(E_k; p) + \Delta_{\mathcal{D}}(p; f)$$

- $\Delta_{\mathcal{D}}(E_k; p) = \mathbf{Adv}_E^{\mathrm{prp}}(\mathcal{D})$ by definition
- $\Delta_{\mathcal{D}}(p;f)$
 - ullet ${\cal D}$ is parametrized by Q queries to p/f

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - Initially empty list of responses L
 - Randomly generated response for every new query

Oracle p

$$y \xleftarrow{\$} \{0,1\}^n \backslash \mathcal{L}$$

$$\mathcal{L} \xleftarrow{\cup} y$$
 return y

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - Initially empty list of responses \mathcal{L}
 - Randomly generated response for every new query

Oracle p	$ \overline{ \text{Oracle } f } $
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y

Step 2. Random Permutation to Random Function

- ullet Consider lazily sampled p and f
 - ullet Initially empty list of responses ${\cal L}$
 - Randomly generated response for every new query

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$ bad	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$\mathcal{L} \xleftarrow{\cup} y$ return y	$\mathcal{L} \overset{\cup}{\longleftarrow} y$ return y	return y

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \overset{\$}{\leftarrow} \{0,1\}^n$ if $y \in \mathcal{L}$ $y \overset{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$ bad	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
$ \mathcal{L} \xleftarrow{\cup} y $ return y	$ \mathcal{L} \overset{\text{bad}}{\leftarrow} y $ return y	return y

$$\Delta_{\mathcal{D}}(p;f)$$

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$	
	$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	
	bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return y	return y	return y

• Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \leq \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$

Oracle p	Oracle p^\prime	Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$	
	$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	
	bad	
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$	
return \boldsymbol{y}	return y	return y

Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \leq \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$

$$\leq 0 +$$

Oracle p	Oracle p^\prime		Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$		$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}_{_{_{\!\mathfrak{g}}}}$		
	,	$(0,1)^n \setminus \mathcal{L}$	
	bad		
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$		
return y	return y		return y
ide	ntical	identical	until had

• Triangle inequality:

$$\Delta_{\mathcal{D}}(p; f) \le \Delta_{\mathcal{D}}(p; p') + \Delta_{\mathcal{D}}(p'; f)$$
 $\le 0 + \mathbf{Pr}[p' \text{ sets bad}]$

Example: PRP-PRF Switch (4/4)

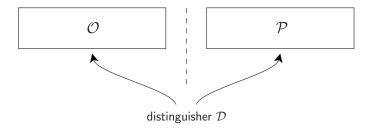
Oracle p	Oracle p^\prime		Oracle f
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$	$y \stackrel{\$}{\leftarrow} \{0,1\}$	n	$y \stackrel{\$}{\leftarrow} \{0,1\}^n$
	if $y \in \mathcal{L}$		
$y \stackrel{\$}{\leftarrow} \{0,1\}^n \backslash \mathcal{L}$			
	bad		
$\mathcal{L} \xleftarrow{\cup} y$	$\mathcal{L} \xleftarrow{\cup} y$		
return y	return y		return y
	1		
identical		identical until bad	

• Triangle inequality:

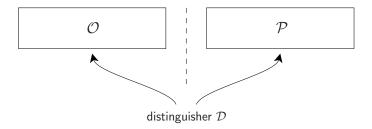
$$\begin{split} \Delta_{\mathcal{D}}(p;f) & \leq \ \Delta_{\mathcal{D}}(p;p') \ + \ \Delta_{\mathcal{D}}(p';f) \\ & \leq \ 0 \ + \ \mathbf{Pr}\left[p' \text{ sets bad}\right] \leq \frac{\binom{Q}{2}}{2^n} \end{split}$$

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]

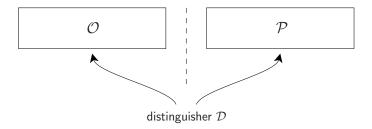


- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]



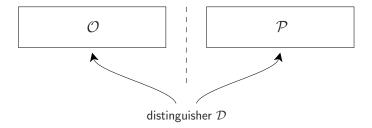
- Basic idea:
 - ullet Each conversation defines a transcript au

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]



- Basic idea:
 - ullet Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts

- Patarin [Pat91,Pat08]
- Popularized by Chen and Steinberger [CS14]
- Similar to "Strong Interpolation Technique" [Ber05]



- Basic idea:
 - ullet Each conversation defines a transcript au
 - $\mathcal{O} \approx \mathcal{P}$ for most of the transcripts
 - Remaining transcripts occur with small probability

- ullet ${\cal D}$ is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

Lemma

Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right]}{\mathbf{Pr}\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

Then,
$$\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr} \left[\mathsf{bad} \right]$$
 transcript for \mathcal{P}

- ullet D is computationally unbounded and deterministic
- ullet Each conversation defines a transcript au
- Consider good and bad transcripts

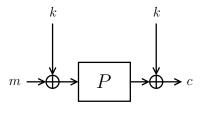
Lemma

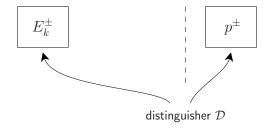
Let $\varepsilon \geq 0$ be such that for all good transcripts τ :

$$\frac{\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right]}{\mathbf{Pr}\left[\mathcal{P} \text{ gives } \tau\right]} \geq 1 - \varepsilon$$

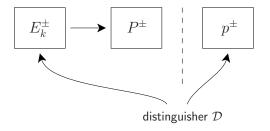
Then, $\Delta_{\mathcal{D}}(\mathcal{O}; P) \leq \varepsilon + \mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } \mathcal{P}\right]$

Trade-off: define bad transcripts smartly!



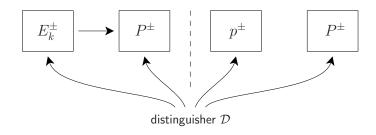


Slightly Different Security Model

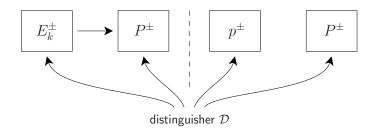


Slightly Different Security Model

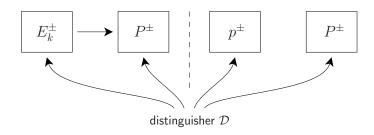
Underlying permutation



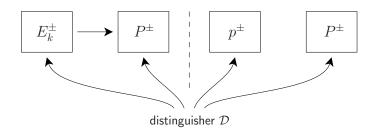
- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - ullet Q construction queries
 - T offline evaluations pprox T primitive queries



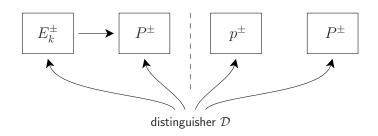
- Underlying permutation randomized
- ullet Information-theoretic distinguisher ${\cal D}$
 - ullet Q construction queries
 - T offline evaluations pprox T primitive queries
 - Unbounded computational power



- ullet Without loss of generality, ${\cal D}$ is deterministic
 - No random choices



- ullet Without loss of generality, ${\cal D}$ is deterministic
 - No random choices
- Reason: at the end we maximize over all distinguishers



Theorem

For any deterministic distinguisher $\mathcal D$ making Q queries to E_k/f and T primitive queries

$$\mathbf{Adv}_E^{\mathrm{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_k^{\pm}, P^{\pm}; p^{\pm}, P^{\pm}) \le \frac{2QT}{2^n}$$

- Step 1. Define how transcripts look like
- Step 2. Define good and bad transcripts
- Step 3. Upper bound $\mathbf{Pr}\left[\mathsf{bad}\right.$ transcript for $(p^{\pm},P^{\pm})]$
- Step 4. Lower bound $\frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} \geq 1 \varepsilon \left(\forall \text{ good } \tau\right)$

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}$$

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - After interaction of \mathcal{D} with oracles: reveal the key

1. Define how transcripts look like

Construction queries:

$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - ullet After interaction of ${\mathcal D}$ with oracles: reveal the key
 - Real world (E_k^\pm, P^\pm) : key used for encryption

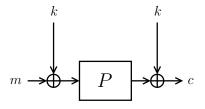
1. Define how transcripts look like

Construction queries:

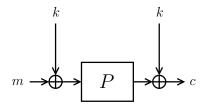
$$\tau_E = \{(m_1, c_1), \dots, (m_Q, c_Q)\}$$

$$\tau_P = \{(x_1, y_1), \dots, (x_T, y_T)\}\$$

- Unordered lists (ordering not needed in current proof)
- ullet 1-to-1 correspondence between any ${\cal D}$ and any (au_E, au_P)
- Bonus information!
 - After interaction of \mathcal{D} with oracles: reveal the key
 - Real world (E_k^{\pm}, P^{\pm}) : key used for encryption
 - Ideal world (p^{\pm}, P^{\pm}) : dummy key $k \xleftarrow{\$} \{0, 1\}^n$

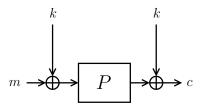


- 2. Define good and bad transcripts
 - Intuition:



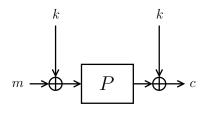
2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$



2. Define good and bad transcripts

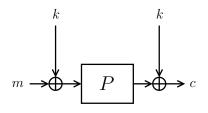
- Intuition:
 - $\bullet \ (m,c) \in \tau_E \text{ ``defines'' } P\text{-query } (m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$



2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

 $\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$



2. Define good and bad transcripts

- Intuition:
 - $(m,c) \in \tau_E$ "defines" P-query $(m \oplus k, c \oplus k)$
 - Should not collide with any $(x,y) \in \tau_P$
- Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in au_E, (x,y) \in au_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

ullet Note: no internal collisions in au_E and au_P

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$k \in \{m \oplus x, c \oplus y \mid (m, c) \in \tau_E, (x, y) \in \tau_P\}$$

- 3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$
 - Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\updownarrow$$

$$k \in \underbrace{\{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}}_{\text{of size} \leq 2QT}$$

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\downarrow \\ k \in \underbrace{\{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}}_{\text{of size} \leq 2QT}$$
 independently generated $n\text{-bit}$ dummy key

3. Upper bound $\Pr[\mathsf{bad} \; \mathsf{transcript} \; \mathsf{for} \; (p^\pm, P^\pm)]$

• Transcript $au = (au_E, au_P, k)$ is bad if

$$\exists (m,c) \in \tau_E, (x,y) \in \tau_P \text{ such that } m \oplus k = x \text{ or } c \oplus k = y$$

$$\downarrow \\ k \in \underbrace{\{m \oplus x, c \oplus y \mid (m,c) \in \tau_E, (x,y) \in \tau_P\}}_{\text{of size} \leq 2QT}$$
 independently generated $n\text{-bit}$ dummy key

$$\mathbf{Pr}\left[\mathsf{bad} \text{ transcript for } (p^{\pm}, P^{\pm})\right] \leq \frac{2QT}{2^n}$$

 $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm, P^\pm) \text{ gives } \tau\right]}{\Pr\left[(p^\pm, P^\pm) \text{ gives } \tau\right]} \geq 1 \varepsilon \text{ (}\forall \text{ good } \tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = ----$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = \frac{}{2^n \cdot 2^n!}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } \tau\right] = \frac{\left|\text{oracles } \mathcal{O} \text{ that could give } \tau\right|}{\left|\text{oracles } \mathcal{O}\right|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^\pm,P^\pm) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n\cdot 2^n!}$$

- $\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm, P^\pm) \text{ gives } \tau\right]}{\Pr\left[(p^\pm, P^\pm) \text{ gives } \tau\right]} \geq 1 \varepsilon \text{ (}\forall \text{ good } \tau\text{)}$
 - Counting "compatible" oracles (modulo details):

$$\mathbf{Pr}\left[\mathcal{O} \text{ gives } au
ight] = rac{\left| ext{oracles } \mathcal{O} \text{ that could give } au
ight|}{\left| ext{oracles } \mathcal{O}
ight|}$$

• For real world (E_k^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(E_k^{\pm},P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n-Q-T)!}{2^n \cdot 2^n!}$$

• For ideal world (p^{\pm}, P^{\pm}) :

$$\mathbf{Pr}\left[(p^{\pm},P^{\pm}) \text{ gives } \tau\right] = \frac{(2^n-Q)!(2^n-T)!}{2^n\cdot(2^n!)^2}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \end{split}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

 $\bullet \ \ {\rm We \ put} \ \varepsilon = 0$

$$\text{4. Lower bound } \frac{\Pr\left[(E_k^\pm,P^\pm)\text{ gives }\tau\right]}{\Pr\left[(p^\pm,P^\pm)\text{ gives }\tau\right]} \geq 1 - \varepsilon \text{ (}\forall\text{ good }\tau\text{)}$$

• Putting things together:

$$\begin{split} \frac{\mathbf{Pr}\left[(E_k^{\pm}, P^{\pm}) \text{ gives } \tau\right]}{\mathbf{Pr}\left[(p^{\pm}, P^{\pm}) \text{ gives } \tau\right]} &= \frac{\frac{(2^n - Q - T)!}{2^n \cdot 2^n!}}{\frac{(2^n - Q)!(2^n - T)!}{2^n \cdot (2^n!)^2}} \\ &= \frac{(2^n - Q - T)!2^n!}{(2^n - Q)!(2^n - T)!} \\ &\geq 1 \end{split}$$

- We put $\varepsilon=0$
- Conclusion:

$$\mathbf{Adv}_E^{\text{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}(E_k^{\pm}, P^{\pm}; p^{\pm}, P^{\pm}) \le \frac{2QT}{2^n} + 0$$