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Birthday Paradox HAPBY BIRTHRAY

For a random selection of 23 people,
with a probability at least 50% two of
them share the same birthday
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Birthday Paradox

For a random selection of 23 people,
with a probability at least 50% two of
them share the same birthday

General Birthday Paradox
e Consider space S = {0,1}"
e Randomly draw ¢ elements from S

e Expected number of collisions:
Ex [collisions] = <g) /2"

e Important phenomenon in cryptography
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Pseudorandom Permutation

E,

blockcipher

p

random permutation

e Two oracles: Ej (for secret random key k) and p
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Pseudorandom Permutation

Ej,

blockcipher

p

random permutation

distinguisher D

e Two oracles: Ej (for secret random key k) and p
e Distinguisher D has query access to either E}, or p

e D tries to determine which oracle it communicates with

AdviP(D) = |Pr [DFk = 1] — Pr[DP = 1]
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Pseudorandom Function

Fy,

one-way function

f

random function

distinguisher D

e Two oracles: F}; (for secret random key k) and f
e Distinguisher D has query access to either F or f

e D tries to determine which oracle it communicates with

Advy (D) = [Pr [P = 1] — Pr [P/ = 1]|
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Counter Mode Based on Pseudorandom Permutation

Ek Ek} ...... Ek
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Counter Mode Based on Pseudorandom Permutation

Ek Ek ...... Ek
[e1] [c2] [e]

e Security bound:

cpa T o n
AdVCpTR[E} (0) < AdvRP(0) + <2>/2
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Counter Mode Based on Pseudorandom Permutation

Ep Ey

...... Ek

e Security bound:

cpa T o n
AdVCpTR[E}(U) < AdviP(o) + <2> /2

e CTR[E] is secure as long as:

e [ is a secure PRP
e Number of encrypted blocks o < 27/2
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Counter Mode Based on Pseudorandom Permutation

E; E.| e Ey

e m; @ ¢; is distinct for all o blocks

e Unlikely to happen for random string
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Counter Mode Based on Pseudorandom Permutation

Ek Ek ...... E/C
[e1] [c2] [ct]

e m; @ ¢; is distinct for all o blocks
e Unlikely to happen for random string
e Distinguishing attack in o &~ 2"/2 blocks:

o n
( 2) /2 S AdvEL (o)
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Counter Mode Based on Pseudorandom Function

Fk} Fk ...... Fk
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Counter Mode Based on Pseudorandom Function

Fk} Fk ...... Fk
[e1] 2] [e]

e Security bound:

cpa rf
Adv g (0) < Advi (o)
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Counter Mode Based on Pseudorandom Function

F, F,

...... Fk

e Security bound:

cpa rf
AdVCI')I'R[F] (o) < Adv} (o)

e CTR[F] is secure as long as Fj, is a secure PRF
e Birthday bound security loss disappeared
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Beyond Birthday-Bound Security

insecure birthday optimal
0 n/2 n

l l l

.

beyond birthday-bound
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Disclaimer

o~

Beyond birthday-bound
Yy y ?5

Better security
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— Lightweight blockciphers at risk



Disclaimer

o~

Beyond birthday-bound
Yy y ?5

Better security

e n large enough: birthday-bound security is okay
— Permutation-based constructions

e n too small: birthday-bound security could be bogus
— Lightweight blockciphers at risk

e Beyond birthday-bound: relevant if n/2 is on the edge
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Sweet32 Attack

On the Practical (In-)Security of 64-bit Block Ciphers:
Collision Attacks on HTTP over TLS and OpenVPN

Bhargavan, Leurent, ACM CCS 2016

32

TLS supported Triple-DES
OpenVPN used Blowfish
Both Blowfish and Triple-DES have 64-bit state

Practical birthday-bound attack on encryption mode
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Outline

PRP-PRF Conversion

Conclusion
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PRP-PRF Conversion

PRP PRF
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PRP-PRF Conversion

Luby-Rackoff / Feistel

N

PRP PRF
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PRP-PRF Conversion

Luby-Rackoff / Feistel

N

PRP PRF

~_

Now
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Naive PRP-PRF Conversion

I, = Ej

blockcipher

f

random function

distinguisher D

PRP-PRF Switch
e Simply view Ej as a PRF
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Naive PRP-PRF Conversion

I, = Ej

blockcipher

f

random function

distinguisher D

PRP-PRF Switch
e Simply view Ej as a PRF
e FE}. does not expose collisions but f does

e Ej, can be distinguished from f in ~ 2"/2 queries

<g) /2" S Advy (@) < AdviP() + (g) /2
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Xor of Permutations

=
T P2 —b—Y

o First suggested by Bellare et al. [BKR98]
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Xor of Permutations

First suggested by Bellare et al. [BKR98]
Lucks [Luc00]: 227/3

Bellare and Impagliazzo [BI99]: 2" /n
Patarin [Pat08]: 2"

2/3
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Xor of Permutations

4,

First suggested by Bellare et al. [BKR98]
Lucks [Luc00]: 227/3

Bellare and Impagliazzo [BI99]: 2" /n
Patarin [Pat08]: 2"

2/3

Adv2T(g) < AdVEP(2q) + ¢/2"
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Counter Mode Based on XoP

[Olln+1] [Lln+1] [olln+2] [tn+2]

Ey,

Ey,

Ey,

Ey,

EOREAY

e Security bound:

Adv X2,

CTR[XoP

[(0) < Adviip(0)
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Counter Mode Based on XoP

[Olln+1] [Lln+1] [olln+2] [tn+2]

e Security bound:

Adv X2,

CTR[XoP]

E. || B || B | | Ex
\ﬁ/

(0) < Adviip(0)

< AdviP(20) 4+ o/27
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Counter Mode Based on XoP

[olln+1] [1ln+1] [oln+2] [Ln+2]
) I

Ek Ek Ek Ek """ Ek Ek
\j/ \f/

e Security bound:
cpa rf
AdVCI')I'R[XoP} (0) < Advip(o)
< AdviP(20) 4+ o/27

e Beyond birthday-bound but 2x as expensive as CTR[E]
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CENC by Iwata [iwaos]

‘(]HnJrl‘ \1|\n+1\ ‘OHHJA‘ ‘1Hn+2‘ ‘l)\wrl‘ ‘1Hn+w‘ ‘(J\\71+2H1Hn+w+l‘

Ey, & E Ey | oo E, Ey, Ey,

k

E 3 E
oY mY =Y mY

e One subkey used for w > 1 encryptions
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CENC by Iwata [iwaos]

[0lln+1] [1n+1] [0lln+1] [tn+2]

By, & E Ey

(]

Ny

‘l)\ n+l‘ ‘1|\n+u:‘ ‘(JHM+2H1H71+w+1‘

Ej,

Ey, E},

k

Yy

E

e One subkey used for w > 1 encryptions

e Almost as expensive as CTR[E]
e 2006: 2%"/3 security, 2" /w conjectured [lwa06]

e 2016: 2" /w security [IMV16]
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CENC by Iwata [iwaos]

‘UHHJH‘ \1|\n+1\ ‘OHHJA‘ ‘1Hn+2‘ \o\nﬂ\ ‘1Hn+u:‘ ‘(JHM+2H1Hn+w+1‘

E k Ey Eg | - E, Ey, E},

k

& E E
S Y =Y mmY

One subkey used for w > 1 encryptions

Almost as expensive as CTR[E]
2006: 22"/3 security, 2" /w conjectured [Iwa06]

2016: 2" /w security [IMV16]

o Well, we did not really prove it ourselves
e Immediate consequence of mirror theory from 2005
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Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,..., P}

e Consider a system of ¢ equations of the form:

Pa1 @Pbl :)\1
Pag @Pbg = )\2
Paq @qu :>\q
for some surjection ¢ : {a1,b1,...,aq4, b5} = {1,...,7}
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Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,..., P}

e Consider a system of ¢ equations of the form:

Pa1 @Pbl :)\1
Pag @Pbg = )\2
Paq @qu :)‘q
for some surjection ¢ : {a1,b1,...,aq4, b5} = {1,...,7}

Goal

e Lower bound on the number of solutions to P
such that P, # P, for all distinct a,b € {1,...,r}
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Mirror Theory

Patarin’s Result

e Extremely powerful lower bound
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Patarin’s Result

e Extremely powerful lower bound

e Has remained rather unknown since introduction (2003)

Authors Publication Application  Mirror Bound
Patarin CRYPTO 2003 Feistel suboptimal
Patarin CRYPTO 2004 Feistel

Patarin ICISC 2005 Feistel optimal in O(-)
Patarin, Montreuil ICISC 2005 Benes

Patarin ICITS 2008 XoP

Patarin ePrint 2010/287  XoP concrete bound
Patarin ePrint 2010/293  Feistel

Patarin ePrint 2013/368  XoP

Cogliati, Lampe, Patarin FSE 2014 XoP?

Volte, Nachef, Marriere  ePrint 2016,/136 Feistel

Ilwata, Mennink, Vizar ePrint 2016/1087 CENC
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Mirror Theory

System of Equations

e r distinct unknowns P = {P, ...

B}

e System of equations P,, ® Py, = \;

e Surjection ¢ : {a1, b1, ...
Graph Based View

,agq,bgt — {1,...,r}

Py,
A
/ P
Pu =P, N Py \ /
A2
M\ A =Py =Py =Pay,
Py, =P, =D, P, =P, /
A1t
/ Py, Payo
P, Py,
Py,
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Mirror Theory: Toy Example 1

e System of equations:
Po® Py=X\
Pb @ Pc = )\2

A1

P,

S
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Mirror Theory: Toy Example 1

. A1
e System of equations: F, P,

P,®oP =)\
P,®d P.= X\ Ao

P

If>\1:00r)\2:00r)\1:}\2
e Contradiction: P, = Pyor P, = P.or P, = P.

e Scheme is degenerate
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P
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Mirror Theory: Toy Example 1

e System of equations: F, P,
Po®Py=X\ /
}%)EB‘FZ = Ag A2
fXi1=00r Ao =00r A\ = Ao
e Contradiction: P, = Pyor P, = P.or P, = P.
e Scheme is degenerate
If A1, A2 #Z 0 and A1 # A2

e 2" choices for P,
e Fixes P, = A\; & P, (which is # P, as desired)
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Mirror Theory: Toy Example 1

e System of equations: F, P,
Po®Py=X\ /
Py® P.= )y Ao
fXi1=00r Ao =00r A\ = Ao
e Contradiction: P, = Pyor P, = P.or P, = P.
e Scheme is degenerate
If A1, A2 Z 0 and \; # )Xo
e 2" choices for P,

e Fixes P, = A\; & P, (which is # P, as desired)
e Fixes P, = Ao & P, (which is # P,, P, as desired)
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Mirror Theory: Toy Example 2

e System of equations:
Po® Py=X\
Pe®Py= X

At

P,
A2

Py
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Mirror Theory: Toy Example 2

e System of equations:
Po® Py=X\
Pe®Py= X

If>\1:00r)\2:0

At

A2

e Contradiction: P, = P, or P, =P,

e Scheme is degenerate
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Mirror Theory: Toy Example 2

e System of equations: P,
Po® Py=X\ »
Pe®Py= X ‘

fXi1=0o0rX=0
e Contradiction: P, = P, or P, =P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P,)

A1

P,
A2

Py
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Mirror Theory: Toy Example 2

e System of equations: P,
Po® Py=X\ »
Pe®Py= X ‘

fXi1=0o0rX=0
e Contradiction: P, = P, or P, =P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P,)
e For P, and P, we require

° PC#P(lan
o Pd:)\Q@PC#Pa,Pb

A1

P,
A2

Py
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Mirror Theory: Toy Example 2

e System of equations:
Po® Py=X\
Pe®Py= X

If>\1:00r)\2:0

A1

A2

e Contradiction: P, = P, or P, =P,

e Scheme is degenerate
If A1, A2 #0

e 2" choices for P, (which fixes P,)

e For P. and P; we require
° PC # P(la Pb

o Pd:)\Z@Pc#Paapb

o At least 2" — 4 choices for P, (which fixes Py)
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Mirror Theory: Toy Example 3

e System of equations: F, P,
Po®Py=X\ \ /
Py® P.= )y Az A2
P.® P, = )3 P.

e Assume \; # 0 and \; #
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Mirror Theory: Toy Example 3

e System of equations: F, P,
Po® Py =\ \ /
Py® P.= )y Az A2
P.® P, = )3 P.

e Assume \; # 0 and \; #

X1 BA2B A3 #0
e Contradiction: equations sum to 0 = A1 & Ao @ A3

e Scheme contains a circle
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Mirror Theory: Toy Example 3

e System of equations: P, & P,
P,eP =)\ \\\\\\\ ///////
P,®d P.= X\ A3 Ao
P.®oP,=)3 P,

e Assume \; # 0 and \; #

A DX BA3#0
e Contradiction: equations sum to 0 = A1 & Ao @ A3
e Scheme contains a circle

X1 DA DA3=0
e One redundant equation, no contradiction

e Still counted as circle
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Mirror Theory: Two Problematic Cases

Circle
- P(ll

Ao

\
= Pa3

a1 = Pb5 A3
x Py, =Py,
5
Y
Py, = Pa,

Degeneracy

A
Py, =Py, L p, P,
%2 N MBA @ DA

PI12 :P.bg Pa3 = Pa4
P,, =P,
A4 X
Pb4 = Tas s
~2 X Py=hy,
Py=Po
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Mirror Theory: Main Result

System of Equations
e r distinct unknowns P = {Py,..., P}
e System of equations P,, & P, = \;
e Surjection ¢ : {a1,b1,...,aq,04} = {1,...,7}

Main Result

If the system of equations is circle-free and non-degenerate,
the number of solutions to P such that P, # P, for all distinct
a,be{l,...,r} is at least

(2")r
214

provided the maximum tree size ¢ satisfies (¢—1)2-r < 27 /67
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Mirror Theory Applied to XoP

o P
A b,

General Setting

e Adversary gets transcript 7 = {(z1,41), ..., (24, Yq)}
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Mirror Theory Applied to XoP

o P
A,

General Setting

e Adversary gets transcript 7 = {(z1,41), ..., (24, Yq)}

e Each tuple corresponds to z; — p(0||z;) =: P,, and
x; — p(1]|zi) =: P,

e System of ¢ equations Py, ® P, = y;

e Inputs to p are all distinct: 2¢ unknowns
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Mirror Theory Applied to XoP

Py, Py, P,

q

Y2 Yq

by, b, Py,
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

e Maximum tree size 2
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

e Maximum tree size 2

o If 2¢ < 2"/67: at least (2")20 golutions to unknowns

2nq
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]
Pr[f gives 7]

>1—¢

Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:
Pr [XoP gives 7]
Pr[f gives 7]

>1—¢
Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]

e Bad transcript: if y; = 0 for some i
e Pr[bad transcript for f] = ¢/2"
e For any good transcript:

n

o Pr[XoP gives 7] 21 &z 0

o Pr[f gives 7] = 527
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:
Pr [XoP gives 7]
Pr[f gives 7]

>1—¢
Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]

e Bad transcript: if y; = 0 for some i
e Pr[bad transcript for f] = ¢/2"
e For any good transcript:

n

. (2") 1
.Pr[XoPglveST]ZT;q' }5:0

(2)2q
o Prf gives 7] = 5L
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]

>1-
Pr(f gives 7] — c

Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]

e Bad transcript: if y; = 0 for some i
e Pr[bad transcript for f] = ¢/2"
e For any good transcript:
. (2")
o Pr[XoP gives 7] > 52¢ . 1 } c—0

(2)2q
o Prf gives 7] = 5L

AdV?(fP(Q) <q/2"

28 /32



Mirror Theory Applied to CENC

Pbl
f\)’\
v
Ys
Fo, = Py,
2,7~
b,

Pay S

wa+1

S
X
S

‘J“’){(L P burt2
Yuw+3
B bw+s

%,

s Fheui
«

a2
Sy bg-w+2

P Yg-w+3 P

Agfw bg-w+3

QNK\' r,
h

1)

29 /32



Mirror Theory Applied to CENC

Py, Pyin o Do
> o o
W ¥ .
" Pb2 ‘J“")({L wa+2 q,w*l Pb{rwﬂ
Py =Py L I F Poynis

Gq/w

NG

I
«
X
/

b, Py, 1)

Applying Mirror Theory
o Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
and y; # y; within all w-blocks
— Call this a bad transcript

e Maximum tree size w + 1
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Mirror Theory Applied to CENC

Py, Py R Boyir
N o
W W Yy
" sz ‘J“")({L Pbm+2 q,w“’ Pb(rwﬂ
Ys Yuts y/TM
P, —— " n, Py =By, Pa,, = Phyoa
y '%‘; ’ ?’; i
by, Py, By,

Applying Mirror Theory

Circle-free: no collisions in inputs to p

Non-degenerate: provided that y; # 0 for all 4
and y; # y; within all w-blocks
— Call this a bad transcript

e Maximum tree size w + 1

If 2w?q < 27 /67: at least (gz,)f solutions to unknowns
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Mirror Theory Applied to CENC

Pyin o Do
/"DX
AW’ ’\)Q
Gar Pousa Co? Popis
Pbm+$ Pﬂq/..‘ = quw+3
%
B}Qm qu

Applying Mirror Theory
o Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
and y; # y; within all w-blocks

— Call this a bad transcript
e Maximum tree size w + 1
If 2w?q < 27 /67: at least (gz,)f solutions to unknowns

H-coefficient technique: AdvE\c(q) < ¢/2" 4+ wq/2"H
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New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theor

Mennink, Neves, CRYPTO 2017

y

e Refurbish and modernize mirror theory

e Prove optimal PRF security of:

E(WC)DM [CS16] EDMD
v ey e {n

b— Y

e Proofs are more involved and beyond scope of presentation
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Outline

PRP-PRF Conversion

Conclusion
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Conclusion

Beyond Birthday-Bound Security
e Not the holy grail

e Relevant for certain applications
e Often achieved using

e Extra randomness
e Extra state size

Challenges
o Trade-off between security and efficiency

e Many open problems in BBB security
e Existing analyses not always tight

Thank you for your attention!
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Indistinguishability

Indistinguishability of Random Systems

@

1 P

.

distinguisher D

Adv™(D) = |Pr [D° = 1] = Pr [D” =1]| = Ap(O; P)
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Indistinguishability

Indistinguishability of Random Systems

@

1 P

.

distinguisher D
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distinguisher D

e Basic idea:

e From O to P in small steps
e Intermediate steps (presumably) easy to analyze
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Triangle Inequality

A(O;P) < A(O;R) + A(R; P)

Fundamental Lemma
If © and P are identical until bad, then:

A(O;P) < Pr [P sets bad]
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Example: PRP-PRF Switch (1/4)

F, = E,

blockcipher

f

random function

distinguisher D

Theorem
For any distinguisher D making Q) queries to Ey/p and T
offline evaluations

n

r (%)
Ap(Ey; f) < AdviP(D) + -2
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Step 1. “Replace” Ej by Random Permutation p
e Triangle inequality:

Ap(Ey; f) < Ap(Ey;p) + Ap(ps f)
o Ap(Ey;p) = Advh’(D) by definition

e Ap(p; f)
e D is parametrized by @ queries to p/f
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H-Coefficient Technique

e Patarin [Pat91,Pat08]

e Popularized by Chen and Steinberger [CS14]
e Similar to “Strong Interpolation Technique” [Ber05]

@

P

distinguisher D

e Basic idea:

e Each conversation defines a transcript 7

o O ~ P for most of the transcripts

e Remaining transcripts occur with small probability

41/32
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H-Coefficient Technique

e D is computationally unbounded and deterministic
e Each conversation defines a transcript 7

e Consider good and bad transcripts

Lemma
Let € > 0 be such that for all good transcripts 7:

Pr[O gives 7] S 1
Pr [P gives 7]

Then, Ap(O; P) < e + Pr [bad transcript for P|

Trade-off: define bad transcripts smartly!

42/32



Example: Even-Mansour (1/10)

43 /32



Example: Even-Mansour (2/10)

Ey

distinguisher D

Slightly Different Security Model

44 /32



Example: Even-Mansour (2/10)

Ef |—>| P*

distinguisher D

Slightly Different Security Model

e Underlying permutation

44 /32



Example: Even-Mansour (2/10)

distinguisher D

Slightly Different Security Model
e Underlying permutation randomized

e Information-theoretic distinguisher D

e () construction queries
e T offline evaluations &~ T primitive queries

44 /32



Example: Even-Mansour (2/10)

distinguisher D

Slightly Different Security Model

e Underlying permutation randomized
e Information-theoretic distinguisher D

e () construction queries
e T offline evaluations &~ T primitive queries
e Unbounded computational power
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Example: Even-Mansour (3/10)

distinguisher D

Slightly Different Security Model
o Without loss of generality, D is deterministic
e No random choices

e Reason: at the end we maximize over all distinguishers
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Example: Even-Mansour (4/10)

distinguisher D

Theorem
For any deterministic distinguisher D making () queries to
Ey/f and T primitive queries

2Q
on

AdvEP(D) = Ap(Ejf, P p*, PF) <
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Example: Even-Mansour (5/10)

Step 1.
Step 2.
Step 3.

Step 4.

Define how transcripts look like
Define good and bad transcripts

Upper bound Pr [bad transcript for (p*, P¥)]

Pr[(E;‘L,Pi) gives T}
Lower bound Br[(r5.PF) gives 7] >1—¢ (V good 7)
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1. Define how transcripts look like

e Construction queries:

TE = {(m17 cl)’ RR) (mQ7 CQ)}

Primitive queries:

e = {(z1,91),- -, (x1, Y1)}

Unordered lists (ordering not needed in current proof)

1-to-1 correspondence between any D and any (7g, 7p)

e Bonus information!
< 4 o After interaction of D with oracles: reveal the key

e Real world (Ej5, P*): key used for encryption
o Ideal world (p*, P%): dummy key k < {0,1}"
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Example: Even-Mansour (7/10)

m P c

2. Define good and bad transcripts
e Intuition:
e (m,c) € T “defines” P-query (m @ k,c D k)
e Should not collide with any (z,y) € 7p
e Transcript 7 = (7g, 7p, k) is bad if
A(m,c) € g, (z,y) € Tpsuchthat m@k=zorcdk=y

e Note: no internal collisions in 7 and 7p
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Example: Even-Mansour (8/10)
3. Upper bound Pr|bad transcript for (pT, P%)]

e Transcript 7 = (7, 7p, k) is bad if

A(m,c) € g, (z,y) € Tp suchthat mGk=xorchk =y
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3. Upper bound Pr|bad transcript for (pT, P%)]
e Transcript 7 = (7, 7p, k) is bad if
A(m,c) € g, (z,y) € Tp suchthat mGk=xorchk =y

!

ke{m@xvc@y‘ (m,c) GTE,(l',y) GTP}

T of size < 2QT
independently generated n-bit dummy key

20T
2?’L

Pr [bad transcript for (pi,Pi)] <
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4. Lower bound >1—¢ (Vgood 7)

Pr[(pi,Pi) gives ‘r] -

¢ Counting “compatible” oracles (modulo details):

’oracles O that could give Tl

Pr[O gives 7] = ‘oracles (’)‘

o For real world (E;f, P*):

2" —Q —T)

Pr [(Eff, P*) gives 7] = TR

e For ideal world (p*, P*):

(2" —Q)e2"-1)
on . (2n1)2

Pr [(pi,Pi) gives 7| =
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Example: Even-Mansour (10/10)

Pr [(E,:ct ,P%) gives ‘r}

4. Lower bound >1—¢ (Vgood 7)

Pr [(pi ,P*) gives ‘r]

e Putting things together:

Pr[(Ef, P*) gives 7] 9
Pr [(pi,Pi) gives 7‘] %
(2" —Q — T)12™!
T 2" -Q)(2"—T)
>1
o We pute =0
e Conclusion:
2QT
AdVE(D) = Ap(BE, PHip*, PH) < 22L 4
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