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Ẽ

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation

2 / 48



Tweakable Blockciphers in OCBx2 OCBgen

A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

Ẽ
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• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

• Internally based on tweakable blockcipher Ẽ
• Tweak (N, index) is unique for every evaluation
• Di�erent blocks always transformed under di�erent tweak

• Change of tweak should be e�cient
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• Tweak (N, index) is unique for every evaluation
• Di�erent blocks always transformed under di�erent tweak

• Change of tweak should be e�cient

3 / 48



Tweakable Blockciphers in OCBx6 OCBgen-with-arrows

A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

Ẽ
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Ẽ

2 tEP

P
Ẽ
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Dedicated Tweakable Blockciphers

• Hasty Pudding Cipher [Sch98]

• AES submission, ��rst tweakable cipher�

• Mercy [Cro01]

• Disk encryption

• Three�sh [FLS+07]

• SHA-3 submission Skein

• TWEAKEY framework [JNP14]

• Four CAESAR submissions
• SKINNY & MANTIS
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Tweakable Blockcipher Security
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Outline

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

Beyond Birthday Bound Tweakable Blockciphers
• State of the Art

• Tight Security of Cascaded LRW2?

• Improved Attack

• Improved Security Bound
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Intuition: Design
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• Consider a blockcipher E with κ-bit key and n-bit state

How to mingle the tweak into the evaluation?

←−−
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blend it with the key blend it with the state

9 / 48



Intuition: Design

1 recipe-emptyts

m cE

k
t ?

• Consider a blockcipher E with κ-bit key and n-bit state

How to mingle the tweak into the evaluation?

←−−
−

←−−
−

blend it with the key blend it with the state

9 / 48



Intuition: Design

2 recipe-key
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• Blending tweak and key works. . .

• . . . but: careful with related-key attacks!

• For ⊕-mixing, key can be recovered in 2κ/2 evaluations

• Scheme is insecure if E is Even-Mansour

• TWEAKEY blending [JNP14] is more advanced
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Intuition: Design
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• Simple blending of tweak and state does not work

• Ẽk(t,m) = Ẽk(t⊕ C,m⊕ C)

• Some secrecy required: h

• Still does not work if adversary has access to Ẽ−1
k

• Ẽ−1
k (t, c)⊕ Ẽ−1

k (t⊕ C, c) = h⊗ C
• Two-sided masking necessary
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k (t⊕ C, c) = h⊗ C
• Two-sided masking necessary

11 / 48



Intuition: Design

4 recipe-msg2

m cE

k

t

h⊗ t

• Simple blending of tweak and state does not work
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• Ẽ−1
k (t, c)⊕ Ẽ−1
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Intuition: Design
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• Two-sided secret masking seems to work

• Can we generalize?

• Generalizing masking? Depends on function f

• Variation in masking? Depends on functions f1, f2

• Releasing secrecy in E? Usually no problem
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Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• Ẽk should �look like� random permutation for every t
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Step 1: • Boils down to �nding generic attacks

• Step 2: • How many evaluations does D need at least?

Step 2: • Boils down to provable security
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m⊕ f1(t) = m′ ⊕ f1(t′) =⇒ c⊕ f2(t) = c′ ⊕ f2(t′)

• Unlikely to happen for random family of permutations

• Implication still holds with di�erence C xored to m,m′

Scheme can be broken in ≈ 2n/2 evaluations
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Intuition: Analysis
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• The fun starts here!

• More technical and often more involved

• Typical approach:
• Consider any transcript τ an adversary may see
• Most τ 's should be equally likely in both worlds
• Odd ones should happen with very small probability

All constructions of this kind: secure up to ≈ 2n/2 evaluations

15 / 48



Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• The fun starts here!

• More technical and often more involved

• Typical approach:
• Consider any transcript τ an adversary may see
• Most τ 's should be equally likely in both worlds
• Odd ones should happen with very small probability

All constructions of this kind: secure up to ≈ 2n/2 evaluations

15 / 48



Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• The fun starts here!

• More technical and often more involved

• Typical approach:
• Consider any transcript τ an adversary may see
• Most τ 's should be equally likely in both worlds
• Odd ones should happen with very small probability

All constructions of this kind: secure up to ≈ 2n/2 evaluations

15 / 48



Outline

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

Beyond Birthday Bound Tweakable Blockciphers
• State of the Art

• Tight Security of Cascaded LRW2?

• Improved Attack

• Improved Security Bound

Conclusion
16 / 48



Tweakable Blockciphers Based on Masking
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Original Constructions

• LRW1 and LRW2 by Liskov et al. [LRW02]:
14 LRWotherEk

m c

t

Ek Ek

13 LRWonetweak

m c

h(t)

Ek

• h is XOR-universal hash
• E.g., h(t) = h⊗ t for n-bit �key� h
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Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:1 picXEX
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4 picTEM
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2α3β7γ · (k‖N ⊕ P (k‖N))

P

• (α, β, γ,N) is tweak (simpli�ed)

• Used in OCB2 and ±14 CAESAR candidates

• Permutation-based variants in Minalpher and Prøst
(generalized by Cogliati et al. [CLS15])
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A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

Ẽ
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• Update of mask:
• Shift and conditional XOR

• Variable time computation

• Expensive on certain platforms
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Gray Code Masking

• OCB1 and OCB3 use Gray Codes:2 picGray
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• (α,N) is tweak

• Updating: G(α) = G(α− 1)⊕ 2ntz(α)

• Single XOR
• Logarithmic amount of �eld doublings (precomputed)

• More e�cient than powering-up [KR11]
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Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:5 picMEM

m c
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0 ◦ P (N‖k)

P

• ϕi are �xed LFSRs, (α, β, γ,N) is tweak (simpli�ed)

• Combines advantages of:
• Powering-up masking
• Word-based LFSRs

• Simpler, constant-time (by default), more e�cient
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MEM: Design Considerations

• Particularly suited for large states (permutations)

• Low operation counts by clever choice of LFSR

• Sample LFSRs (state size b as n words of w bits):

b w n ϕ

128 8 16 (x1, . . . , x15, (x0 ≪ 1)⊕ (x9 � 1)⊕ (x10 � 1))
128 32 4 (x1, . . . , x3, (x0 ≪ 5)⊕ x1 ⊕ (x1 � 13))
128 64 2 (x1, (x0 ≪ 11)⊕ x1 ⊕ (x1 � 13))
256 64 4 (x1, . . . , x3, (x0 ≪ 3)⊕ (x3 � 5))
512 32 16 (x1, . . . , x15, (x0 ≪ 5)⊕ (x3 � 7))
512 64 8 (x1, . . . , x7, (x0 ≪ 29)⊕ (x1 � 9))

1024 64 16 (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))
1600 32 50 (x1, . . . , x49, (x0 ≪ 3)⊕ (x23 � 3))

...
...

...
...

• Work exceptionally well for ARX primitives
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MEM: Uniqueness of Masking

• Intuitively, masking goes well as long as

ϕγ2 ◦ ϕ
β
1 ◦ ϕ

α
0 6= ϕγ

′

2 ◦ ϕ
β′

1 ◦ ϕ
α′
0

for any (α, β, γ) 6= (α′, β′, γ′)

• Challenge: set proper domain for (α, β, γ)

• Requires computation of discrete logarithms

64 128 256 512 1024

︸ ︷︷ ︸
solved by

Rogaway [Rog04]

︸ ︷︷ ︸
results implicitly used,

e.g., by Prøst (2014)︸ ︷︷ ︸
solved by Granger et al. [GJMN16]
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Application to AE: OPP1 OPPg

PSfrag replacements

A0 A1 Aa–1 M0 M1 Md–1⊕Mi

C1 C2 Cd

T

ϕ0(L)

ϕ0(L)

ϕ1(L)

ϕ1(L)

ϕa–1(L)

ϕa–1(L)

ϕ2◦ϕ2
1◦ϕd–1(L)

ϕ2◦ϕ2
1◦ϕd–1(L) ϕ2◦ϕ0(L) ϕ2◦ϕ1(L) ϕ2◦ϕd–1(L)

ϕ2◦ϕ0(L) ϕ2◦ϕ1(L) ϕ2◦ϕd–1(L)

PP P P PPP

• O�set Public Permutation (OPP)

• Generalization of OCB3:
• Permutation-based
• More e�cient MEM masking

• Security against nonce-respecting adversaries

• 0.55 cpb with reduced-round BLAKE2b

26 / 48

L = P (N‖k)
ϕ1 = ϕ⊕ id , ϕ2 = ϕ2 ⊕ ϕ⊕ id



Application to AE: MRO2 MROg

A0 Aa–1 T‖0 T‖d–1M0 Md–1 |A|‖|M |

C1 Cd

T

ϕ0(L)

ϕ0(L)

ϕa–1(L)

ϕa–1(L)

ϕ1◦ϕ0(L)

ϕ1◦ϕ0(L)

ϕ1◦ϕd–1(L)

ϕ1◦ϕd–1(L)

ϕ2
1(L)

ϕ2
1(L)

ϕ2(L) ϕ2(L)

ϕ2(L)⊕M0 ϕ2(L)⊕Md–1

P

PPP P PP

• Misuse-Resistant OPP (MRO)

• Fully nonce-misuse resistant version of OPP

• 1.06 cpb with reduced-round BLAKE2b

27 / 48

L = P (N‖k)
ϕ1 = ϕ⊕ id , ϕ2 = ϕ2 ⊕ ϕ⊕ id



Outline

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

Beyond Birthday Bound Tweakable Blockciphers
• State of the Art

• Tight Security of Cascaded LRW2?

• Improved Attack

• Improved Security Bound

Conclusion
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Beyond Birthday Bound Tweakable Blockciphers

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• �Birthday bound� 2n/2 security at best

• Overlying modes inherit security bound

• If n is large enough −→ no problem

• If n is small −→ �beyond birthday bound� solutions
• Tweak-rekeying [Min09,Men15,WGZ+16,JLM+17,Cog18,LL18]

• Cascading (now)
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Cascading LRW2's
1 TXCE

m c· · · · · ·

h1(t) h1(t)⊕h2(t) hρ−1(t)⊕hρ(t) hρ(t)

Ek1 Ek2 Ekρ

• LRW2[ρ]: concatenation of ρ LRW2's

• k1, . . . , kρ and h1, . . . , hρ independent

• ρ = 2: secure up to 22n/3 queries [LST12,Pro14]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [LS13]

• Best attack: 2n queries

30 / 48

�Cascaded LRW2�
= LRW2[2]
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Cascading TEM's
1 TEMrho

m c· · · · · ·

h1(t) h1(t)⊕h2(t) hρ−1(t)⊕hρ(t) hρ(t)

P1 P2 Pρ

• TEM[ρ]: concatenation of ρ TEM's

• P1, . . . , Pρ and h1, . . . , hρ independent

• ρ = 2: secure up to 22n/3 queries [CLS15]

• ρ ≥ 2 even: secure up to 2ρn/(ρ+2) queries [CLS15]

• Best attack: 2ρn/(ρ+1) queries [BKL+12]
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State of the Art
n/2 2n/3 3n/4 5n/6 n

LRW2[1]

LRW2[2]

LRW2[3]

LRW2[4]

LRW2[5]

LRW2[6]

LRW2[7]

LRW2[8]

LRW2[9]

LRW2[10]

LRW2[11]

gap

gap

gap

gap

gap

gap

gap

gap

gap

gap

n/2 2n/3 3n/4 5n/6 n

TEM[1]

TEM[2]

TEM[3]

TEM[4]

TEM[5]

TEM[6]

TEM[7]

TEM[8]

TEM[9]

TEM[10]

TEM[11]

gap

gap

gap

gap

gap

gap

gap

gap

gap
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Tight Security of Cascaded LRW2?

m Ek1 Ek2 c

h1(t) h1(t)⊕ h2(t) h2(t)

n/2 2n/3 3n/4 n

gap

improved attack
(generalized construction)

improved bound
(conditionally)

carries over to LRW2[3]�LRW2[5]
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Improved Attack

• GCL (Generalized Cascaded LRW2):

m Ek1 Ek2 c

f1(t) f2(t) f3(t)

• fi are arbitrary functions

• pi := Eki are random permutations

Generic distinguishing attack in 2n1/223n/4 evaluations

36 / 48
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Improved Attack: Rationale

m1

m3

m′2

m′4

p1

p1

p1

p1

p2

p2

p2

p2

c1

c3

c′2

c′4

f1(t)

f1(t′)

f2(t)

f2(t′)

f3(t)

f3(t′)

• Distinguisher D makes various queries
for two di�erent tweaks: t and t′

• Suppose it makes 4 queries such that

m1 ⊕ f1(t) = m′2 ⊕ f1(t′)

c′2 ⊕ f3(t′) = c3 ⊕ f3(t)

m3 ⊕ f1(t) = m′4 ⊕ f1(t′)

• Necessarily,

c1 ⊕ f3(t) = c′4 ⊕ f3(t′)

• Stated di�erently:

m1 ⊕m′2 = m3 ⊕m′4 = f1(t)⊕ f1(t′)

c′2 ⊕ c3 = c1 ⊕ c′4 = f3(t)⊕ f3(t′)

37 / 48
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• Stated di�erently:

m1 ⊕m′2 = m3 ⊕m′4 = f1(t)⊕ f1(t′)

c′2 ⊕ c3 = c1 ⊕ c′4 = f3(t)⊕ f3(t′)

• But D does not know f1(t)⊕ f1(t′)

• Choose the mi's and m
′
i's such that

for any d, there are 2n quadruples
such that m1 ⊕m′2 = m3 ⊕m′4 = d
(costs 23n/4 queries for both t and t′)

• E[solutions to c′2 ⊕ c3 = c1 ⊕ c′4]?
2 if d = f1(t)⊕ f1(t′), 1 otherwise

• Extend the number of queries by
factor n1/2 to eliminate false positives
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factor n1/2 to eliminate false positives
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Improved Attack: Rationale

m1

m3

m′2

m′4

p1

p1

p1

p1

p2

p2

p2

p2

c1

c3

c′2

c′4

f1(t)

f1(t′)

f2(t)

f2(t′)

f3(t)

f3(t′)

• Stated di�erently:
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Improved Attack: Veri�cation

Theoretical Veri�cation

• Assuming n ≥ 27, the success probability of D is at least 1/2

• Analysis consists of properly bounding Pr
[
DẼk = 1

]
and Pr

[
Dπ̃ = 1

]

Experimental Veri�cation

• Small-scale implementation for n = 16, 20, 24

• Nd is the number of hits c′2 ⊕ c3 = c1 ⊕ c′4
Nd in real world for d = Nd in ideal world for d =

n n1/2 ≈ q f1(t)⊕ f1(t′) random f1(t)⊕ f1(t′) random

16 2 4 · 212 256.593750 129.781250 127.093750 127.375000

20 2 4 · 215 265.531250 133.312500 125.625000 128.750000

24 2 4 · 218 246.750000 131.375000 120.625000 129.875000
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Improved Security Bound

• Cascaded LRW2:

m Ek1 Ek2 c

h1(t) h1(t)⊕ h2(t) h2(t)

• Eki are SPRP-secure

• hi are 4-wise independent XOR-universal hash

• No tweak is queried more than 2n/4 times

Cascaded LRW2 is secure up to ≈ 23n/4 evaluations
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Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

• Replace Eki by random permutations pi

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

Step 2: Patarin's H-Coe�cient Technique

• Main task: given q evaluations of cascaded LRW2,
derive lower bound on #{(p1, p2)}

• Lower bound should hold for the �most likely� transcripts
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m p1 p2 c

h1(t) h1(t)⊕ h2(t) h2(t)

⇐⇒

m⊕ h1(t)

c⊕ h2(t)

h1(t)⊕ h2(t)

• 2 unknowns: X := p1(m⊕ h1(t)) and Y := p−1
2 (c⊕ h2(t))

• 1 equation: X ⊕ Y = h1(t)⊕ h2(t)

• Lower bound on #{(p1, p2)} related to the number of choices (X,Y )
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Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (All Tuples)

m̄1 m̄2 = m̄3 m̄4 = m̄5 = m̄6 m̄7

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 = c̄7

f(t1) f(t2) f(t3) f(t4)

f(t5)

f2(t6) f2(t7)

notation:
m̄i = mi ⊕ h1(ti)
c̄i = ci ⊕ h2(ti)

f(ti) = h1(ti)⊕ h2(ti)

• r1 unknowns for p1, r2 unknowns for p2, and q equations

• Two potential problems:

(i) Graph contains circle
(ii) Graph contains path of even length whose labels sum to 0 (degeneracy)

• If neither of these occurs: one �free choice� for each tree
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Improved Security Bound: Proof Idea (4)

Step 5: Patarin's Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1, p2) is at least

2n!2n!

2nq
·
(

1− 4q

2n

)

• Lower bound on #{(p1, p2)} su�cient to derive 23n/4 security
(some technicality involved)

• Violation of (i), (ii), or (iii) with probability at most O(q4/23n)

• We apply mirror theory up to the �rst iteration
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Improved Security Bound: Bottlenecks

Excessively Large Tree

• Badness probability relies on
• tweak limitation
• 4-wise independence of hash functions

Mirror Theory

• Mirror theory developed for comparison with PRF, not with PRP

• Problem mitigated due to tweak limitation
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Conclusion

Tweakable Blockciphers: Simple and Powerful

• Myriad applications to AE, MAC, encryption, . . .

• Trade-o� between security and e�ciency

• Beyond birthday bound security achieved using
• Extra randomness
• Extra state size

Challenges

• Tightness of cascaded LRW2 without side conditions?

• Longer cascades of LRW2[ρ] and TEM[ρ]?

• Many further open problems in BBB security

Thank you for your attention!
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Updated State of the Art on LRW2[ρ]

n/2 2n/3 3n/4 5n/6 n

LRW2[1]

LRW2[2]

LRW2[3]

LRW2[4]

LRW2[5]

LRW2[6]

LRW2[7]

LRW2[8]

LRW2[9]

LRW2[10]

LRW2[11]

gap

gap

gap

gap

gap

gap

gap

gap

gap

gap

improved attack
(generalized construction)

improved bound
(conditionally)

carries over to
LRW2[3]-LRW2[5]
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H-Coe�cient Technique

• Patarin [Pat91,Pat08]

• Popularized by Chen and Steinberger [CS14]

• Similar to �Strong Interpolation Technique� [Ber05]

2 indistsimpleO

IC

construction

O P

distinguisher D

• Basic idea:
• Each conversation de�nes a transcript τ

• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability
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H-Coe�cient Technique

• D is computationally unbounded and deterministic

• Each conversation de�nes a transcript τ

• Consider good and bad transcripts

Lemma
Let ε ≥ 0 be such that for all good transcripts τ :

Pr [O gives τ ]

Pr [P gives τ ]
≥ 1− ε

Then, ∆D(O;P ) ≤ ε+ Pr [bad transcript for P]

Trade-o�: de�ne bad transcripts smartly!
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Mirror Theory

System of Equations

• Consider r distinct unknowns P = {P1, . . . , Pr}
• Consider a system of q equations of the form:

Pa1 ⊕ Pb1 = λ1

Pa2 ⊕ Pb2 = λ2

...

Paq ⊕ Pbq = λq

for some surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Goal

• Lower bound on the number of solutions to P
such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r}
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Mirror Theory

Patarin's Result

• Extremely powerful lower bound

• Has remained rather unknown since introduction (2003)

Authors Publication Application Mirror Bound

Patarin CRYPTO 2003 Feistel Suboptimal

Patarin CRYPTO 2004 Feistel
Patarin ICISC 2005 Feistel Optimal in O(·)
Patarin, Montreuil ICISC 2005 Benes
Patarin ICITS 2008 XoP
Patarin AFRICACRYPT 2008 Benes
Patarin ePrint 2010/287 XoP Concrete bound
Patarin ePrint 2010/293 Feistel
Patarin ePrint 2013/368 XoP
Cogliati, Lampe, Patarin FSE 2014 XoPd

Volte, Nachef, Marrière ePrint 2016/136 Feistel
Iwata, Mennink, Vizár ePrint 2016/1087 CENC
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Patarin CRYPTO 2004 Feistel
Patarin ICISC 2005 Feistel Optimal in O(·)
Patarin, Montreuil ICISC 2005 Benes
Patarin ICITS 2008 XoP
Patarin AFRICACRYPT 2008 Benes
Patarin ePrint 2010/287 XoP Concrete bound
Patarin ePrint 2010/293 Feistel
Patarin ePrint 2013/368 XoP
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Mirror Theory

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}
Graph Based View

Pa1 =Pa2

Pb1

Pb3

Pa4 =Pa5

Pb5

Pb2 =Pa3 =Pb4

λ1

λ2

λ3

λ4

λ5

Pa6

Pb6

λ6

Pa7

Pb7λ7

Pa8 Pa9

Pb8 =Pb9 =Pb10 =Pa11

Pa10

Pb11

λ8

λ9

λ10 λ11
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Mirror Theory: Toy Example 1

• System of equations:
Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

If λ1 = 0 or λ2 = 0 or λ1 = λ2

• Contradiction: Pa = Pb or Pb = Pc or Pa = Pc

• Scheme is degenerate

If λ1, λ2 6= 0 and λ1 6= λ2

• 2n choices for Pa

• Fixes Pb = λ1 ⊕ Pa (which is 6= Pa as desired)

• Fixes Pc = λ2 ⊕ Pb (which is 6= Pa, Pb as desired)
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Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)

57 / 48

Pa Pb

Pc Pd

λ1

λ2



Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)

57 / 48

Pa Pb

Pc Pd

λ1

λ2



Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)

57 / 48

Pa Pb

Pc Pd

λ1

λ2



Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)

57 / 48

Pa Pb

Pc Pd

λ1

λ2



Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb

• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)

57 / 48

Pa Pb

Pc Pd

λ1

λ2



Mirror Theory: Toy Example 3

• System of equations:
Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

Pc ⊕ Pa = λ3

• Assume λi 6= 0 and λi 6= λj

If λ1 ⊕ λ2 ⊕ λ3 6= 0

• Contradiction: equations sum to 0 = λ1 ⊕ λ2 ⊕ λ3

• Scheme contains a circle

If λ1 ⊕ λ2 ⊕ λ3 = 0

• One redundant equation, no contradiction

• Still counted as circle
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Mirror Theory: Two Problematic Cases

Circle Degeneracy

Pa1 = Pb5

Pb1 = Pa2

Pb2 = Pa3

Pb3 = Pa4

Pb4 = Pa5

λ1
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λ3
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λ5

Pa1 =Pa2 Pb1
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Mirror Theory: Main Result

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Main Result

If the system of equations is circle-free and non-degenerate, the number of
solutions to P such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r} is at least

(2n)r
2nq

provided the maximum tree size ξ satis�es (ξ − 1)2 · r ≤ 2n/67
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Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}

• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns
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Mirror Theory Applied to XoP

Pa1

Pb1

Pa2

Pb2

Paq

Pbq

· · ·y1 y2 yq

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi 6= 0 for all i

−→ Call this a bad transcript

• Maximum tree size 2

• If 2q ≤ 2n/67: at least
(2n)2q

2nq solutions to unknowns
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Mirror Theory Applied to XoP

H-Coe�cient Technique [Pat91,Pat08,CS14]

Let ε ≥ 0 be such that for all good transcripts τ :

Pr [XoP gives τ ]

Pr [f gives τ ]
≥ 1− ε

Then, Advprf
XoP(q) ≤ ε+ Pr [bad transcript for f ]

• Bad transcript: if yi = 0 for some i
• Pr [bad transcript for f ] = q/2n

• For any good transcript:

• Pr [XoP gives τ ] ≥ (2n)2q
2nq · 1

(2n)2q

• Pr [f gives τ ] = 1
2nq

Advprf
XoP(q) ≤ q/2n
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New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual:

Towards Optimal Security Using Mirror Theory

Mennink, Neves, CRYPTO 2017

• Refurbish and modernize mirror theory

• Prove optimal PRF security of:

E(WC)DM [CS16]

x p1 p2 y

h(m)

EDMD

x p1 p2 y
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