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Tweakable Blockciphers
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Tweakable Blockciphers

m —> E —> C

e Tweak: flexibility to the cipher

e Each tweak gives different permutation
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Tweakable Blockciphers in OCBx
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e Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
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Tweakable Blockciphers in OCBx
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e Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

e Internally based on tweakable blockcipher E

e Tweak (V,index) is unique for every evaluation
o Different blocks always transformed under different tweak

e Change of tweak should be efficient
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Tweakable Blockcipher Designs

Dedicated Blockcipher-Based Permutation-Based
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Tweakable Blockcipher Designs in CAESAR

Dedicated Blockcipher-Based
KIASU, CBA, COBRA, iFeed, Marble
Joltik, SCREAM, OMD, POET, SHELL,
AEZ, OTR,
Deoxys COPA/ELmD, OCB

first round, second round, third round, final round

Permutation-Based

Prgst,
Minalpher
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Dedicated Tweakable Blockciphers

Hasty Pudding Cipher [Sch98]

e AES submission, “first tweakable cipher”

Mercy [Cro01]
e Disk encryption

Threefish [FLS+07]
e SHA-3 submission Skein

TWEAKEY framework [JNP14]

e Four CAESAR submissions
e SKINNY & MANTIS
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Tweakable Blockcipher Security

D

random tweakable permutation

Ey

tweakable blockcipher

distinguisher D

o E}, should look like random permutation for every ¢

e Different tweaks — pseudo-independent permutations
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Tweakable Blockcipher Security

D

random tweakable permutation

Ey

tweakable blockcipher

distinguisher D

o E}, should look like random permutation for every ¢
e Different tweaks — pseudo-independent permutations

e D tries to determine which oracle it communicates with

AdviP™P (D) = ‘Pr {ka’ﬁk‘ = 1] _Pr [Dﬁ‘l - 1”

6/48



Outline

Tweakable Blockciphers Based on Masking
e Intuition
e State of the Art

e Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers
e State of the Art
e Tight Security of Cascaded LRW,?
e Improved Attack

e Improved Security Bound

Conclusion
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Intuition: Design

t — 7

m ——> E —> C

e Consider a blockcipher E with x-bit key and n-bit state

How to mingle the tweak into the evaluation?
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Intuition: Design

t — 7

m ——> E —> C

e Consider a blockcipher E with x-bit key and n-bit state

How to mingle the tweak into the evaluation?

<N

blend it with the key blend it with the state

9/48



Intuition: Design
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e Blending tweak and key works. ..
e ... but: careful with related-key attacks!
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Intuition: Design

m ——> E —> C

Blending tweak and key works. . .

... but: careful with related-key attacks!

For ®-mixing, key can be recovered in 2//2 eyaluations
Scheme is insecure if E is Even-Mansour

TWEAKEY blending [JNP14] is more advanced



Intuition: Design

m~>$—>E—>c

e Simple blending of tweak and state does not work
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Intuition: Design

h®t h&t

m E Cc

o Simp|~e blending Sf tweak and state does not work
e Ei(t,m)=EtdC,maeC)

e Some secrecy required: h

e Still does not work if adversary has access to E,;l
o« Bl t,e)o B (t®a Ce)=heC

e Two-sided masking necessary
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Intuition: Design
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e Two-sided secret masking seems to work

e Can we generalize?
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Intuition: Analysis

f(t)

fa(t)

e
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Intuition: Analysis

f(t) fa(t)

m Ek:/P c

E}, should “look like” random permutation for every ¢

Consider adversary D that makes ¢ evaluations of Ey

Step 1: e How many evaluations does D need at most?
e Boils down to finding generic attacks

Step 2: e How many evaluations does D need at least?
e Boils down to provable security

13 /48
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Intuition: Analysis

fi(?) fa(t)

SR Sy W

e For any two queries (t,m,c), (t',m/,):

ma fi(t)=m' @ fi(t') = ¢ fo(t) = & fo(t)
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Intuition: Analysis

f(t) fa(t)

SR Sy W

e For any two queries (t,m,c), (t',m/,):

ma fit)=m' & fit') = c® folt) = & fol)

e Unlikely to happen for random family of permutations

e Implication still holds with difference C' xored to m,m’

Scheme can be broken in &~ 27/2 evaluations
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Intuition:

Analysis

f(t) fa(t)

m Ek:/P c

e The fun starts here!
e More technical and often more involved

e Typical approach:
e Consider any transcript 7 an adversary may see
e Most 7's should be equally likely in both worlds
e Odd ones should happen with very small probability

All constructions of this kind: secure up to ~ 2™/2 evaluations
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Tweakable Blockciphers Based on Masking

m

tweak-based mask

1

Blockcipher-Based
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Tweakable Blockciphers Based on Masking

Blockcipher-Based Permutation-Based
tweak-based mask tweak-based mask
1 1
m—>p—> L >b—>c m —>p P D ¢
typically 128 bits much larger: 256-1600 bits
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Original Constructions

e LRW; and LRW, by Liskov et al. [LRW02]:

m B, (\LU E, —>c m E; c

oD
A\
oD
A\

e h is XOR-universal hash
e Eg., h(t)=h®t for n-bit "key” h
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Powering-Up Masking (XEX)

e XEX by Rogaway [Rog04]:

293577 . Ey(N)
1

m D f?k

fan)
A\
o

e (a,,7,N) is tweak (simplified)
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Powering-Up Masking (XEX)

e XEX by Rogaway [Rog04]:

293577 . Ey(N) 223877 . (k||N & P(k|N))
1 1

m—>p—> L, P

oD,
A\
(e}
=
S
oD
A\

a
YV
o

e (a,,7,N) is tweak (simplified)
e Used in OCB2 and +14 CAESAR candidates

e Permutation-based variants in Minalpher and Prgst
(generalized by Cogliati et al. [CLS15])
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Powering-Up Masking in OCB2-Like Construction
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Powering-Up Masking in OCB2-Like Construction
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Powering-Up Masking in OCB2-Like Construction
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Powering-Up Masking in OCB2-Like Construction
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Powering-Up Masking in OCB2-Like Construction

Ay Ay A, DM, M, M,y
%2-3% 2232, 293°L éQd‘sL %4 éﬁ
- =\
Ey By | - Ey E, E By | -
E— & S “
Cl CQ d
L = Ex(N) T
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Powering-Up Masking in OCB2-Like Construction

Ay Ay A OM; M, M, My
oo boo deo bew bu b $o
By B, s By Ep N B \'/Ek = f
B - & P o A g 7
L = E,(N) T

20 /48



Powering-Up Masking in OCB2-Like Construction

Ay A, DM, M, M, My
éz-gﬂ 293°L é& %@ 22 247,
= N
Ey Ey Ey \ Ey, Ey | = k
Pary Pary Pary %% 2L 2L
o AV P \
Cl CQ d
L = Ex(N) T

e Update of mask:
e Shift and conditional XOR

e Variable time computation

e Expensive on certain platforms
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Gray Code Masking

e OCB1 and OCB3 use Gray Codes:

m

e (a,N) is tweak

° Updating: G(a) = G(a — 1) D gntz(a)

(@@ (> 1)) - Ex(N)

fan)

Ay

Ex

fan)

Ay
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Gray Code Masking

e OCB1 and OCB3 use Gray Codes:

(a® (> I1)) - By (N)

m

Ey

fan)
Ay
fan)
Ay
o

e (a, N) is tweak

o Updating: G(a) = G(a — 1) @ 2m=(@)
¢ Single XOR
e Logarithmic amount of field doublings (precomputed)

e More efficient than powering-up [KR11]
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Tweakable Blockciphers Based on Masking
e Intuition
e State of the Art
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Masked Even-Mansour (MEM)

e MEM by Granger et al. [GIMN16]:

©3 0@l 0 g o P(N||k)
1
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o

e o, are fixed LFSRs, («, 8,7, N) is tweak (simplified)
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Masked Even-Mansour (MEM)

e MEM by Granger et al. [GIMN16]:

3 0 @1 0 ¢ o P(N|k)
1

m—>—> P

oD
A\
o

e o, are fixed LFSRs, («, 8,7, N) is tweak (simplified)
e Combines advantages of:

e Powering-up masking
e Word-based LFSRs

e Simpler, constant-time (by default), more efficient
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MEM: Design Considerations

e Particularly suited for large states (permutations)

e Low operation counts by clever choice of LFSR
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MEM: Design Considerations

e Particularly suited for large states (permutations)
e Low operation counts by clever choice of LFSR

e Sample LFSRs (state size b as n words of w bits):

b w n ©

128 8 16 (x1,... %15, (0 K 1) @ (x9 > 1) & (z10 K 1))
128 32 4 (x1,...,23, (vo K 5)®z1 & (z1 K 13))
128 64 2 (z1, (zo K 11) ® 21 & (z1 K 13))
256 64 4 (z1,...,23, (o K 3) @ (3 > 5))
512 32 16 (z1,...,215, (0 K 5) B (x3 > 7))
512 64 8 (z1,..., 27, (o K 29)® (21 K9))
1024 64 16 (z1,...,215, (0 K 53) & (x5 K 13))
1600 32 50 (z1,..., x40, (1‘0 XK 3) @ (w23 > 3))
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MEM: Design Considerations

e Particularly suited for large states (permutations)

e Low operation counts by clever choice of LFSR

e Sample LFSRs (state size b as n words of w bits):

b w n ©
128 8 16 (x1,... %15, (0 K 1) @ (x9 > 1) & (z10 K 1))
128 32 4 (z1,...,13, (w0 K 5) @z & (z1 < 13))
128 64 2 (z1, (zo x 11) ®x1 @ (z1 K 13))
256 64 4 (z1,...,73, (x0 < 3)® (z3>> 5))
512 32 16 (z1,...,215, (0 K 5) D (x3 > 7))
512 64 8  (z1,...,27, (w0 << 29) @ (21 < 9))
1024 64 16 (z1,...,715, (20 < 53) @ (25 < 13))
50  (x1,...,%49, (1‘0 K 3) @ (w23 > 3))

1600

32

e Work exceptionally well for ARX primitives
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MEM: Uniqueness of Masking

e Intuitively, masking goes well as long as

03 0P ol # oY 0@k o

for any (a,8,7) # (¢, 5',7)
e Challenge: set proper domain for («, 3,7)
e Requires computation of discrete logarithms
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MEM: Uniqueness of Masking

e Intuitively, masking goes well as long as

03 0P ol # oY 0@k o

for any (a,8,7) # (¢, 5',7)
e Challenge: set proper domain for («, 3,7)
e Requires computation of discrete logarithms

64 128 256 512 1024
| | | | |
[ [ [ [ |
N——
solved by results implicitly used,
Rogaway [Rog04] e.g., by Prest (2014)

solved by Granger et al. [GJMN16]
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Application to AE: OPP

Ao A, A, OM, M, M, M,
%w“(ﬁ) $¢l(ﬁ) éw“ (L) éuz%ﬁfov‘i ‘(ﬁ)émw"(ﬁ)éwwl(ﬁ) %wowd (L)
P po| P P P po| P
DL D' De L) P ww?w""(m% @20¢"(L) éwzw'@) %ww“(m
S— - 5% D c, C, cy
L = P(N|k) T

o1 =@ id, ps =" B D id

e Offset Public Permutation (OPP)
e Generalization of OCB3:

e Permutation-based
o More efficient MEM masking

e Security against nonce-respecting adversaries

e 0.55 cpb with reduced-round BLAKE2b
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Application to AE: MRO

AU Aa— 1 l[g

P |- P

év“(L) év""@) éww”(m
P
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D ¢100%(L)
Ay

_____ D Va
v A

L= P(N|k)
p1=p®id, po = DpDid

v

My Al TYo T)d-1
éwwd" (L) éw(L) émm
P P | - P
Beropt (L) %&2@)@1‘% %@2@)@1\'&71
D D »i(L) ) c,
P
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e Misuse-Resistant OPP (MRO)
e Fully nonce-misuse resistant version of OPP
e 1.06 cpb with reduced-round BLAKE2b
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Beyond Birthday Bound Tweakable Blockciphers

fi(t)

fa(t)

R

E,/P

b

e “Birthday bound” 2"/2 security at

best

e Overlying modes inherit security bound
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Beyond Birthday Bound Tweakable Blockciphers

fi(t)

fa(t)

S

b

“Birthday bound” 2"/2 security at best

Overlying modes inherit security bound

If n is large enough — no problem
If n is small — “beyond birthday bound”

o Tweak-rekeying [Min09,Men15WGZ+16,JLM+17,Cog18,LL18]

e Cascading (now)

solutions
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Cascading LRW;'s

hl (t)

ha(t)@ha(t) ! 1 (t
m~)£—> Ek] \ll/ Ek2 s ‘)L Ep ‘)LL

e LRW;[p]: concatenation of p LRW;'s “Cascaded LRW,”
® ki,...,k, and hq,...,h, independent = LRW,[2]
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Cascading LRW,'s

hl (t)

ha(t)@®ha(t) 1,1 (L f 1, (t
m Ek] ul/ Ek2 > ... Ek ¢

LRW;[p]: concatenation of p LRW;'s “Cascaded LRW,”
ki,...,k, and hi,..., h, independent = LRW,[2]

e p=2: secure up to 2%/3 queries [LST12,Prol4]

p > 2 even: secure up to 27"/ (P+2) queries [LS13]

Best attack: 2" queries
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Cascading TEM's

hl (t)

I (£)@hs(t) / (¢
m —e%i}—> P JS P - ——>éL~%> }1) —e%l}—> ¢

e TEM[p]: concatenation of p TEM's
e Pi,...,P,and hy,...,h, independent
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Cascading TEM's

hl (t)

hy(t)®ha(t) ) f 1, (t
m })1 JS _[E > }1) ¢

TEM]|p]: concatenation of p TEM's
Pi,...,P,and hy,...,h, independent

e p=2: secure up to 2%/3 queries [CLS15]
p > 2 even: secure up to 27"/ (P+2) queries [CLS15]
Best attack: 27%/(Pt1) queries [BKL+12]
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n/2 2n/3 3n/4 5n/6 n
1 1 1

State of the Art | py.q

]
LRW,[2]
LRW,[3]
LRW,[4]
LRW, 5]
]
]
]
]

LRW,[6
LRW,[7
LRW,[8
LRW,[9
LRW,][10]
LRW,][11]

n/2 2n/3 3n/4 5n/6 n
1 1

TEM|
TEM|
TEM|
TEM|
TEM|
TEM[6
[
[
[
[t
[t

1
2
3
4
5

}
]
]
]
]
]
TEM[7]
]
]
0
1

TEM[8
TEM[9
TEM[1
TEM[1

]
]
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n/2 2n/3 3n/4 5n/6 n
1 1 1

State of the Art | py.q

]
LRW,[2]
LRW,[3]
LRW,[4]
LRW, 5]
]
]
]
]

LRW,[6
LRW,[7
LRW,[8
LRW,[9
LRW,][10]
LRW,][11]

Improved
in [Men18]

n/2 2n/3 3n/4 5n/6 n
1 1

TEM([1
TEM[2
TEM[3
TEM[4
TEM[5
TEM[6
[7
8
9
1
1

TEM
TEM
TEM
TEM
TEM

]
]
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Outline

Tweakable Blockciphers Based on Masking
e Intuition
e State of the Art

e Improved Efficiency

Beyond Birthday Bound Tweakable Blockciphers
o State of the Art
e Tight Security of Cascaded LRW,?
e Improved Attack

e Improved Security Bound

Conclusion
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Tight Security of Cascaded LRW,?
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gap

34 /48



Tight Security of Cascaded LRW,?

hi(t) h1(t) EB ha(t) ha(t)

AaTes1

n/2 2n/3 3n/4 n

gap

improved attack
(generalized construction)

34 /48



Tight Security of Cascaded LRW,?

ha(t) hyi(t) @ ha(t) ha(t)
m Ek1 L Ekz l &
n/2 2n/3 3n/4 n

\_/(
improved bound
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Tight Security of Cascaded LRW,?

hi(t) h1(t) EB ha(t) ha(t)
m %J}— Ek EkQ (L C
n/2 2n/3 3n/4 n
| | |
\_/‘
improved bound
(conditionally)
improved attack
/ (generalized construction)

carries over to LRW,[3]-LRW,[5]
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Improved Attack

e GCL (Generalized Cascaded LRW>):

f1(t) fa(t) f3(t)

D S e T Wl

e f; are arbitrary functions

e p; := E}, are random permutations
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Improved Attack

e GCL (Generalized Cascaded LRW>):

f1(t) fa(t)

e

ey
w
~
=~
N

S
)

e f; are arbitrary functions

e p; := E}, are random permutations

Generic distinguishing attack in 2n'/223%/ evaluations
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Improved Attack: Rationale

e Distinguisher D makes various queries

for two different tweaks: ¢ and ¢/

C1

my

S

B = 0

—
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C3

m3

4
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Improved Attack: Rationale
e Distinguisher D makes various queries
for two different tweaks: ¢ and ¢/
e Suppose it makes 4 queries such that
D (;;w D (;;7 D C1 ! #
S S R S G S m1 @ fi(t) = my @ f1(t)
P T U e | &4 f3lt) = ¢ @ f(t)
m3 @ fi(t) =my @ f1(t)
fany m Pany m Pany /
ARG R S Gl I
h®) Fa(t)) Fa(t')
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o () o (1 o
B A G B S el R my @ fi(t) = mh & fi(t)
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ma3 @ @ © ‘ (P? D C3 / /
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Improved Attack: Rationale

Distinguisher D makes various queries
for two different tweaks: ¢ and ¢/

e Suppose it makes 4 queries such that

o () o (1 ) o
B A G B S el R my @ fi(t) = mh & fi(t)
flft) m f2ft) : m f3¢(t) C/2 @ f3 (t/) =c3D f3 (t)
ma3 @ Lfi) © Lfij D C3 _ / /
| m3 @ f1(t) =my ® f1(t)
/ o (] o | (o) o / o Necessarily,
(S SN D B G e I S / /
A) B ! St 1@ f3(t) = 4 @ f3()
), cg @ éD : @ é ¢y e Stated differently:

my & my =mz®&my = fi1(t) & f1(t')
h®eg=c1®cy = f3(t)® f3(t)
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Improved Attack: Rationale

o Stated differently:

ft) e h(t)

ch®es=c1®cy = f3(t) D f3(t')

/ /
2:m3@m4_

midm

C1

€3

mi

\\\\\\\\

O— Z —D

ms
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Improved Attack: Rationale

mi

ms

o (| o (s | o
AL A A g
fi(t) f2(t) | f3(t)
i3 (| L) i3
T J f T
fi ') f2(t') f3(t')
S R T W N P
= =

el

€3

o Stated differently:
my @ my =m3®my = fi(t) & fi(t)
ch®es=c1®cy = f3(t) D f3(t')

e But D does not know fi(t) & f1(t)
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Improved Attack: Rationale

o Stated differently:
my @ my =mg®my = fi(t)D fi(t)

/ / /
fary P m C @ C3 = C @ Cy = J= t EB R t
my u( @ u( T @ \JT, c1 2 3 1 4 fd( ) fd( )
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SV S ey T S N Y S

38 /48



Improved Attack: Rationale
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my @ my =mg®my = fi(t)D fi(t)

/ o s Y
e A A s 0 s e
flft) — fQE” : — f‘*ft) e But D does not know fi(t) & f1(t)
s @ P @ ! 172 @ @ e Choose the m;'s and mg's such that
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Improved Attack: Rationale

o Stated differently:
my @ my =mg®my = fi(t)D fi(t)

/ _ / /
e A A s 0 s e
A R0 F3(®) /
Ny e e ! ) e But D does not know fi(t) & fi(t')
’ ¥ Y Yo ) v ’ e Choose the m;'s and m!'s such that
: for any d, there are 2" quadruples
m, (%\ @ \JT@\ : @ @Tﬁ I such tha;;l}z;ll () m,2 =ms3®D mil = d/
) Lo ) (costs 2 queries for both ¢ and t')
A R | Fo()
o é o) é@ ; ) é . e E[solutions to ¢, ® c3 = ¢1 @ ¢]?
‘ J = ‘ 2if d= fi(t)® f1(t'), 1 otherwise

o Extend the number of queries by
factor n/2 to eliminate false positives
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Improved Attack: Verification

Theoretical Verification

e Assuming n > 27, the success probability of D is at least 1/2
e Analysis consists of properly bounding Pr [DEk = 1} and Pr [D% = 1]
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Improved Attack: Verification

Theoretical Verification

e Assuming n > 27, the success probability of D is at least 1/2
e Analysis consists of properly bounding Pr [DEk = 1} and Pr [D% = 1]

Experimental Verification
e Small-scale implementation for n = 16, 20, 24

e N is the number of hits ¢y, ® c3 =1 ® ¢

Ny in real world for d = Ny in ideal world for d =
n n'/? q Al @ AF) random  fi(t) ® fi(t) random
16 2 4.212 256.593750 129.781250 127.093750 127.375000
20 2 4.1 265.531250 133.312500 125.625000 128.750000
24 2 4.218 246.750000 131.375000 120.625000 129.875000
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Improved Security Bound

Cascaded LRW5:

hl(t) h1 (t) &) hg(t) hg(t)
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E}, are SPRP-secure

h; are 4-wise independent XOR-universal hash

No tweak is queried more than 2/ times
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Improved Security Bound

Cascaded LRW5:

h1 (t) h1 (t) @ ho (t) ho (t)

m %GL—» Ekl GL EkQ G C

E}, are SPRP-secure

h; are 4-wise independent XOR-universal hash

No tweak is queried more than 2/ times

Cascaded LRW, is secure up to ~ 2%/* evaluations

4148



Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

e Replace Ej, by random permutations p;

EB ha(t) ha(t)

AT
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Improved Security Bound: Proof Idea (1)

Step 1: SPRP Switch

e Replace Ej, by random permutations p;

h1 (t) h1 (t) @ ho (t) ho (t)

B el e B
-

Ay Ay

Step 2: Patarin’s H-Coefficient Technique

e Main task: given ¢ evaluations of cascaded LRW5,
derive lower bound on #{(p1,p2)}

e Lower bound should hold for the “most likely” transcripts

42 /48



Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

me h(t)
m(® () © a0 et I
m 1 C:W ! C;W { ¢ = ha(t) @ ha(t)
— ) J
c® ha(t)
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m @ hi(t)
ha(t) ha(t) @ ha(t) ha(t) I
rﬁw (—T { <~ hi(t) ® ha(t)
m : p1 ! p2 : c J
c® ho (t)

e 2 unknowns: X := p;(m @ hy(t)) and YV := py ' (c @ ha(t))
e 1 equation: X ®Y = hy(t) ® ha(t)
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Improved Security Bound: Proof Idea (2)

Step 3: Transform Transcript to Graph (One Tuple)

m @ hi(t)
ha(t) ha(t) @ ha(t) ha(t) I
rﬁ} (—T { <~ hi(t) @ ha(t)
m f P f p2 f c J
c® ho (t)

e 2 unknowns: X := p;(m @ hy(t)) and YV := py ' (c @ ha(t))
e 1 equation: X ®Y = hy(t) ® ha(t)
o Lower bound on #{(p1,p2)} related to the number of choices (X,Y")

43 /48



Improved

Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (AII Tuples)

mo = M3

/\ notation:
F(t2) f(ts) falts) fz(t7 e

/N / VAR

m; P hl(ti)
¢ @ ha(t;)
hi(t;) @ ha(ts)

Ce = C7

e 11 unknowns for p1, ro unknowns for ps, and ¢ equations
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Improved Security Bound: Proof Idea (3)

Step 4: Transform Transcript to Graph (AII Tuples)

m1 mo = M3

( /\ notation:
f(t1) ft2) f(ts) f(ta) | fa(te) fz(t7 M = 1 ® ha(t:)

¢ = c; @ ha(t;)

/ \ / f(ts) \/ F(ts) = ha(ti) @ ha(t:)

Cc1 Ce = C7

e 11 unknowns for p1, ro unknowns for ps, and ¢ equations
e Two potential problems:

(i) Graph contains circle
(i) Graph contains path of even length whose labels sum to 0 (degeneracy)

e If neither of these occurs: one “free choice” for each tree

44/ 48



Improved Security Bound: Proof Idea (4)

Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1,p2) is at least

m2nl (L dg
ong \ " on
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o Lower bound on #{(p1,p2)} sufficient to derive 23"/ security
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Improved Security Bound: Proof Idea (4)

Step 5: Patarin’s Mirror Theory (Informal)

If the graph is (i) circle free, (ii) non-degenerate, and (iii) has no excessively
large tree, the number of possible (p1,p2) is at least

m2nl (L dg
ong \ " on

o Lower bound on #{(p1,p2)} sufficient to derive 23"/ security
(some technicality involved)

e Violation of (i), (ii), or (iii) with probability at most O(q*/2")
e We apply mirror theory up to the first iteration

45/ 48



Improved Security Bound: Bottlenecks

Excessively Large Tree
e Badness probability relies on

o tweak limitation
e 4-wise independence of hash functions

Mirror Theory
e Mirror theory developed for comparison with PRF, not with PRP

e Problem mitigated due to tweak limitation
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Conclusion

Tweakable Blockciphers: Simple and Powerful
e Myriad applications to AE, MAC, encryption, ...

e Trade-off between security and efficiency
e Beyond birthday bound security achieved using

e Extra randomness
e Extra state size
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Conclusion

Tweakable Blockciphers: Simple and Powerful
e Myriad applications to AE, MAC, encryption, ...

e Trade-off between security and efficiency
e Beyond birthday bound security achieved using

e Extra randomness
e Extra state size

Challenges
e Tightness of cascaded LRW, without side conditions?

e Longer cascades of LRW;[p] and TEM[p]?
e Many further open problems in BBB security

Thank you for your attention!
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Updated State of the Art on LRW,[p]
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Updated State of the Art on LRW,[p]

improved bound improved attack
(conditionally) (generalized construction)
n/2 2n/3 3n/4 n/6 n

LRW2[1] ‘ ! ! /\1 / | !

LRW;[2]

LRW;[3]

LRW;[4]

LRW,[5]

LRW. 6] ~

LRW;[7] carries over to

LRW;[8] LRW[3]-LRW; 5]

LRW,[9]

LRW,[10]

LRW;[11]
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H-Coefficient Technique

e Patarin [Pat91,Pat08]
e Popularized by Chen and Steinberger [CS14]
e Similar to “Strong Interpolation Technique” [Ber05]
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H-Coefficient Technique

e Patarin [Pat91,Pat08]
e Popularized by Chen and Steinberger [CS14]
e Similar to “Strong Interpolation Technique” [Ber05]

O

1 P

T~

distinguisher D

e Basic idea:

e Each conversation defines a transcript 7
o O ~ P for most of the transcripts
e Remaining transcripts occur with small probability

51/48



H-Coefficient Technique

e D is computationally unbounded and deterministic

e Each conversation defines a transcript 7
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H-Coefficient Technique

e D is computationally unbounded and deterministic
e Each conversation defines a transcript 7

e Consider good and bad transcripts
Lemma
Let € > 0 be such that for all good transcripts 7:

Pr[O gives 7] Sl
Pr [P gives 7]

Then, Ap(O; P) < e+ Pr [bad transcript for P]

Trade-off: define bad transcripts smartly!

52 /48



Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,...,P.}

e Consider a system of ¢ equations of the form:

Pa1 S?) Pb1 = )\1
Po, ® By, = Ao
Paq & qu = )\q
for some surjection ¢ : {a1,b1,...,a4,04} — {1,...,7}
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Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,...,P.}

e Consider a system of ¢ equations of the form:

Pa1 S?) Pb1 = )\1
Po, ® By, = Ao
Paq & qu = )\q
for some surjection ¢ : {a1,b1,...,a4,04} — {1,...,7}

Goal

e Lower bound on the number of solutions to P
such that P, # P, for all distinct a,b € {1,...,r}

53 /48



Mirror Theory

Patarin’'s Result

e Extremely powerful lower bound
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Mirror Theory

Patarin’'s Result

e Extremely powerful lower bound

e Has remained rather unknown since introduction (2003)

Authors

Publication

Application  Mirror Bound

Patarin
Patarin
Patarin

CRYPTO 2003
CRYPTO 2004
ICISC 2005

Feistel Suboptimal
Feistel
Feistel Optimal in O(+)
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Patarin’'s Result

e Extremely powerful lower bound

e Has remained rather unknown since introduction (2003)

Authors Publication Application  Mirror Bound
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Patarin ePrint 2013/368 XoP

Cogliati, Lampe, Patarin FSE 2014 XoP4

Volte, Nachef, Marriére  ePrint 2016/136 Feistel

lwata, Mennink, Vizar ePrint 2016/1087 CENC
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Mirror Theory

System of Equations
e r distinct unknowns P = {Py,..., P}
e System of equations P,, ® P, = \;

e Surjection ¢ : {a1,b1,...,aq,bq} — {1,...

Graph Based View

Py,
A
/;/// P,
Py =P, A Py
Ao
X
A4
Py, =Poy =Dy, ! Py, =Py,
% Fbe
Py,
e
R
P,,

Pyg =Py =Py =Pay,

Ao A

Py,
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Mirror Theory: Toy Example 1

e System of equations:
Pa S Pb = )\1
Pb @ Pc = )\2

A1

P,

S
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Mirror Theory: Toy Example 1

. A1
e System of equations: F, P,

Pa@Pb:)\l
Pb@PC:)\Z )\2

F.

If)\1:00r)\2:00r)\1:>\2
e Contradiction: P, = P,or P, =P.or P, = P,

e Scheme is degenerate
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. A1
e System of equations: F, P,

P,oP =X\
Py, P.= X\ A2

P

fXi=00rXo=00r A\ = Xz
e Contradiction: P, = Pyor P, =P.or P, =P,
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e 2" choices for P,

56 / 48



Mirror Theory: Toy Example 1

e System of equations: P, P,
PooP=X\ /
Py, P.= X\ A2
fXi=00rXo=00r A\ = Xz
e Contradiction: P, = Pyor P, =P.or P, =P,
e Scheme is degenerate
If A1, A2 #Z 0 and A1 # A2

e 2" choices for P,
e Fixes P, = A\; & P, (which is # P, as desired)

56 / 48



Mirror Theory: Toy Example 1

e System of equations: P, P,
PooP=X\ /
P®FP. =X\ A2
fXi=00rXo=00r A\ = Xz
e Contradiction: P, = Pyor P, =P.or P, =P,
e Scheme is degenerate
If A1, A2 £ 0 and A1 # )Xo
e 2" choices for P,

e Fixes P, = A\; & P, (which is # P, as desired)
e Fixes P, = Ao & P, (which is # P,, P, as desired)
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Mirror Theory: Toy Example 2

e System of equations:
Pa S Pb = )\1
Pe® Py =X

At

P,
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e Contradiction: P, = P, or P, = P,
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e 2" choices for P, (which fixes P)
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Mirror Theory: Toy Example 2

e System of equations: P, M P,
P, ® Pb = )\l Ay
Pc D Pd = )\2 P, Py,

If A1 =00rX2=0
e Contradiction: P, = P, or P, = P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P)
e For P, and P; we require

° PC#PLLvPb
L4 Pd:)\QGBPc?éPaan

o At least 2" — 4 choices for P, (which fixes Py)
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Mirror Theory: Toy Example 3

e System of equations: Py & Py
Pa ) Pb == )\1 \ /
Pb &b PC = )\2 A3 A2
P.®P,= )3 P,

e Assume \; # 0 and \; # A
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Mirror Theory: Toy Example 3

e System of equations: P, P,
Pa @ Pb = )\1 \ /
P®FP. =X\ A3 A2
Pc 5> Pa = )\3 P

e Assume \; # 0 and \; # A

A1 DA B A3#0
e Contradiction: equations sum to 0 = A1 & Ao B A3
e Scheme contains a circle

A1 DA DA3=0
e One redundant equation, no contradiction

e Still counted as circle

58 /48



Mirror Theory: Two Problematic

Circle

Py, =P, N

A —~
by, =P,

Pa1 :Pbs Az

x Fos = Fau

/M

Bm = Pa5

Cases

Degeneracy

A
P, =Py, E— P

A2 MO @A
3
Py, =Dy, Py, =P,
Pb7 = Pbg
Ay X
Pb4 = Lag )\5
\ A6 bej = Pb7
As
Py, = Py,
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Mirror Theory: Main Result

System of Equations
e 1 distinct unknowns P = {P;,..., P}
e System of equations P,, & Py, = \;
e Surjection ¢ : {a1,b1,...,aq4,bq} = {1,...,7}

Main Result

If the system of equations is circle-free and non-degenerate, the number of
solutions to P such that P, # P, for all distinct a,b € {1,...,r} is at least

(2")r
214

provided the maximum tree size ¢ satisfies (€ —1)2-r < 2"/67
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Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}

General Setting
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Mirror Theory Applied to XoP

o P
A b,

e Adversary gets transcript 7 = {(z1,91), ..., (¢, Yq)}

General Setting

e Each tuple corresponds to x; — p(0||z;) =: P,, and
xi = p(1|x;) =: P,
e System of ¢ equations P, & Py, = y;

e Inputs to p are all distinct: 2¢ unknowns

61/48



Mirror Theory Applied to XoP

IS b, Py,
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

e Maximum tree size 2
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Mirror Theory Applied to XoP

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
— Call this a bad transcript

Maximum tree size 2

If 2¢ < 27/67: at least (227;)5‘1 solutions to unknowns
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]

>1-
Pr|f gives 7] — c

Then, Adv2(g) < & + Pr[bad transcript for f]
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H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]

>1-
Pr|f gives 7] — c

Then, Adv2(g) < & + Pr[bad transcript for f]

e Bad transcript: if y; = 0 for some 4
e Pr [bad transcript for f] = ¢/2"
e For any good transcript:

e Pr[XoP gives 7] > (22n;)q2q . (2n1)2q

1
2ng
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]
Pr[f gives 7]

>1—c

Then, Adv2(g) < & + Pr[bad transcript for f]

e Bad transcript: if y; = 0 for some 4
e Pr [bad transcript for f] = ¢/2"
e For any good transcript:
o Pr[XoP gives 7] > Z)2a . 1 } c—0

24 (27)24
o Prlf gives 7] = L.

AdV?(fP(Q) <q/2"
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New Look at Mirror Theory

Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory

Mennink, Neves, CRYPTO 2017

e Refurbish and modernize mirror theory

e Prove optimal PRF security of:

E(WC)DM [CS16] EDMD
e Lpi v v {n -y
h(m) ----------
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