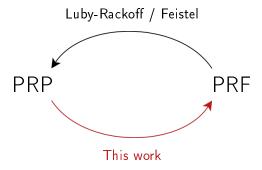
On the XOR of Multiple Random Permutations

Bart Mennink and Bart Preneel KU Leuven (Belgium)

Applied Cryptography and Network Security

June 5, 2015

PRP PRF



ullet Let E_K be a PRP

- ullet Let E_K be a PRP
 - $\bullet \ f_K(x) = E_{E_K(x)}(x)$

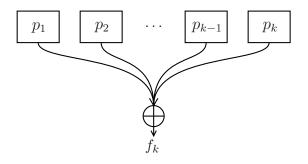
- Let E_K be a PRP
 - $f_K(x) = E_{E_K(x)}(x)$
 - $f_K(x) = E_K(x) \oplus x$

- Let E_K be a PRP
 - $f_K(x) = E_{E_K(x)}(x)$
 - $f_K(x) = E_K(x) \oplus x$
 - $\bullet \ f_K(x) = E_K(x)$

- Let E_K be a PRP
 - $f_K(x) = E_{E_K(x)}(x)$
 - $f_K(x) = E_K(x) \oplus x$
 - $f_K(x) = E_K(x)$
- All: secure PRFs up to birthday bound

- Let E_K be a PRP
 - $\bullet \ f_K(x) = E_{E_K(x)}(x)$
 - $f_K(x) = E_K(x) \oplus x$
 - $f_K(x) = E_K(x)$
- All: secure PRFs up to birthday bound
- XOR of multiple PRPs: $E_{K_1}(x) \oplus \cdots \oplus E_{K_k}(x)$?

XOR of Multiple Permutations



$$f_k(x) = p_1(x) \oplus \cdots \oplus p_k(x)$$

Instantiations

Secret Permutations

- ullet Based on E_{K_1},\ldots,E_{K_k}
- ullet Adversary can only evaluate f_k
 - $\longrightarrow \mathsf{indistinguishability}$

Instantiations

Secret Permutations

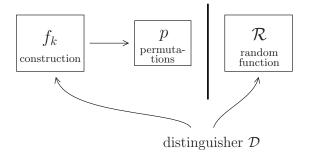
- Based on E_{K_1}, \ldots, E_{K_k}
- Adversary can only evaluate f_k
 - \longrightarrow indistinguishability

Public Permutations

- Based on stand-alone p_1, \ldots, p_k
- Adversary can evaluate f_k and p_1, \ldots, p_k
 - \longrightarrow indifferentiability

Indistinguishability of f_k (p_i secret)

Indistinguishability of f_k : Security Model



- $p = (p_1, \dots, p_k)$ random n-bit permutations
- \mathcal{R} random n-bit function
- ullet Distinguisher ${\mathcal D}$ computationally unbounded

Indistinguishability of f_k : State of the Art

indistinguishability	k	bound	reference
$(p_i \text{ secret})$	≥ 1	$2^{\frac{k}{k+1}n}$	[Lucks00]
	2	$2^n/n^{2/3}$	[Bellarel99]
	2	2^n	[Patarin08]
	≥ 3	$2^{\frac{2k+1}{2k+2}n}$	[CogliatiLP14]

Indistinguishability of f_k : State of the Art

indistinguishability	k	bound	reference
$(p_i secret)$	≥ 1	$2^{\frac{k}{k+1}n}$	[Lucks00]
	2	$2^n/n^{2/3}$	[Bellare199]
	2	2^n	[Patarin08]
	≥ 3	$2^{\frac{2k+1}{2k+2}n}$	[CogliatiLP14]
		\checkmark	
	(Conjectured	2^n

Theorem For all $k \geq 2$, we have $Adv^{dist}_{f_{k+1}}(\mathcal{D}) \leq Adv^{dist}_{f_k}(\mathcal{D})$

Theorem For all $k \geq 2$, we have $\mathrm{Adv}^{\mathrm{dist}}_{f_{k+1}}(\mathcal{D}) \leq \mathrm{Adv}^{\mathrm{dist}}_{f_k}(\mathcal{D})$

Proof

• Security of f_{k+1}

 $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}

 $\mbox{Theorem For all } k \geq 2, \mbox{ we have } \mbox{Adv}^{\rm dist}_{f_{k+1}}(\mathcal{D}) \leq \mbox{Adv}^{\rm dist}_{f_k}(\mathcal{D})$

Proof

- Security of f_{k+1}
 - $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}
- Reveal output p_{k+1} for every query (in both worlds)

Theorem For all $k \geq 2$, we have $\mathrm{Adv}^{\mathrm{dist}}_{f_{k+1}}(\mathcal{D}) \leq \mathrm{Adv}^{\mathrm{dist}}_{f_k}(\mathcal{D})$

Proof

- Security of f_{k+1} $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}
- Reveal output p_{k+1} for every query (in both worlds)
- \mathcal{D} effectively queries $p_1\oplus\cdots\oplus p_k$ or $\mathcal{R}':=\mathcal{R}\oplus p_{k+1}$

Theorem For all $k \geq 2$, we have $\mathrm{Adv}^{\mathrm{dist}}_{f_{k+1}}(\mathcal{D}) \leq \mathrm{Adv}^{\mathrm{dist}}_{f_k}(\mathcal{D})$

Proof

- Security of f_{k+1} $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}
- Reveal output p_{k+1} for every query (in both worlds)
- $\mathcal D$ effectively queries $p_1\oplus\cdots\oplus p_k$ or $\mathcal R':=\mathcal R\oplus p_{k+1}$ \longrightarrow Security of f_k

Theorem For all $k \geq 2$, we have $\mathrm{Adv}^{\mathrm{dist}}_{f_{k+1}}(\mathcal{D}) \leq \mathrm{Adv}^{\mathrm{dist}}_{f_k}(\mathcal{D})$

Proof

- Security of f_{k+1}
 - $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}
- Reveal output p_{k+1} for every query (in both worlds)
- \mathcal{D} effectively queries $p_1\oplus\cdots\oplus p_k$ or $\mathcal{R}':=\mathcal{R}\oplus p_{k+1}$ \longrightarrow Security of f_k

Lemma [Patarin08] We have $Adv_{f_2}^{dist}(\mathcal{D}) = \mathcal{O}(q/2^n)$

 $\mbox{Theorem For all } k \geq 2, \mbox{ we have } \mbox{Adv}^{\rm dist}_{f_{k+1}}(\mathcal{D}) \leq \mbox{Adv}^{\rm dist}_{f_k}(\mathcal{D})$

Proof

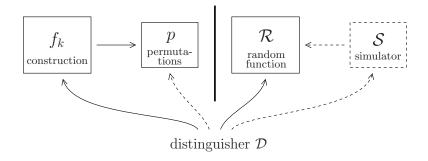
- Security of f_{k+1}
 - $\longrightarrow \mathcal{D}$ queries $p_1 \oplus \cdots \oplus p_{k+1}$ or \mathcal{R}
- Reveal output p_{k+1} for every query (in both worlds)
- $\mathcal D$ effectively queries $p_1\oplus\cdots\oplus p_k$ or $\mathcal R':=\mathcal R\oplus p_{k+1}$ \longrightarrow Security of f_k

Lemma [Patarin08] We have $\operatorname{Adv}_{f_2}^{\operatorname{dist}}(\mathcal{D}) = \mathcal{O}(q/2^n)$

Corollary For all $k \geq 2$, we have $\operatorname{Adv}_{f_k}^{\operatorname{dist}}(\mathcal{D}) = \mathcal{O}(q/2^n)$

Indifferentiability of f_k (p_i public)

Indifferentiability of f_k : Security Model



- ullet Extends indistinguishability: structure of f_k is known
- f_k indifferentiable from \mathcal{R} if \exists simulator \mathcal{S} such that (f_k, p) and $(\mathcal{R}, \mathcal{S})$ are indistinguishable

Indifferentiability of f_k : State of the Art

indifferentiability	k	bound	reference
$(p_i public)$	2	$2^{n/2}$	[Manda PN10]
	2	$2^{2n/3}$	[Manda PN10]

Our Contribution

- •
- •

Indifferentiability of f_k : State of the Art

indifferentiability	k	bound	reference
$(p_i \; public)$	2	$2^{n/2}$	[MandalPN10]
	-2	$-2^{2n/3}$	-[MandalPN10]-

Our Contribution

• Flaw in proof of [MandalPN10]

•

Indifferentiability of f_k : State of the Art

indifferentiability	k	bound	reference
$(p_i \; public)$	2	$2^{n/2}$	[MandalPN10]
	-2	$-2^{2n/3}$	-[Manda PN10]-
	≥ 2	$2^{2n/3}$	

Our Contribution

- Flaw in proof of [MandalPN10]
- Re-confirmation and generalization of bound

Indifferentiability of f_k : New Result

Theorem For all $k \geq 2$, there exists a simulator S such that

$$\mathsf{Adv}^{\mathsf{diff}}_{f_k,\mathcal{S}}(\mathcal{D}) \le \frac{4q^3}{2^{2n}} + \frac{3n^{1/2}q^{3/2}}{2^n} + \frac{2}{2^n}$$

• Old bound: $\frac{96q^3}{2^{2n}} + \frac{1}{2^{11n}}$ [MandalPN10]

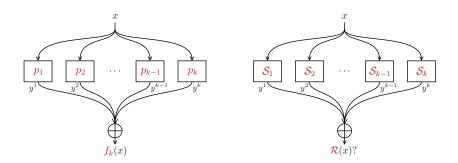
Indifferentiability of f_k : New Result

Theorem For all $k \geq 2$, there exists a simulator S such that

$$\mathsf{Adv}^{\mathsf{diff}}_{f_k,\mathcal{S}}(\mathcal{D}) \le \frac{4q^3}{2^{2n}} + \frac{3n^{1/2}q^{3/2}}{2^n} + \frac{2}{2^n}$$

- Old bound: $\frac{96q^3}{2^{2n}} + \frac{1}{2^{11n}}$ [MandalPN10]
- ullet Simulator ${\cal S}$ and proof similar to the old ones
- Now: high-level intuition

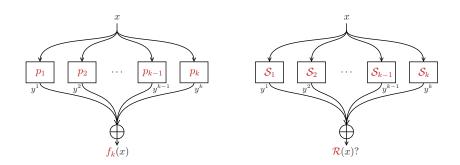
Indifferentiability of f_k : Simulator



Goal of Simulator

• Tries to answer queries such that $(f_k, p) \approx (\mathcal{R}, \mathcal{S})$

Indifferentiability of f_k : Simulator



Goal of Simulator

- Tries to answer queries such that $(f_k, p) \approx (\mathcal{R}, \mathcal{S})$
- Query-responses (x, y^1, \dots, y^k) should satisfy
 - $\mathcal{R}(x) = y^1 \oplus \cdots \oplus y^k$
 - x and y^{ℓ} permutation-wise distinct for all $\ell=1,\ldots,k$

Indifferentiability of f_k : Proof Idea

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

Indifferentiability of f_k : Proof Idea

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

```
\mathsf{Adv}^{\mathrm{diff}}_{f_k,\mathcal{S}}(\mathcal{D}) \leq \varepsilon + \mathbf{P}\left(\mathsf{bad} \text{ transcript for } (f_k,p)\right)
\qquad \qquad \mathsf{prob. ratio for good transcripts}
```

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define good and bad transcripts

Trade-off: define bad transcripts smartly!

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

Analysis of [MandalPN10]

 \bullet Transcript is bad if $|N(z)| \geq \frac{24q^2}{2^n-q}$ for some z

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

Analysis of [MandalPN10]

- Transcript is bad if $|N(z)| \geq \frac{24q^2}{2^n-q}$ for some z
- $\varepsilon \leq 96q^3/2^{2n}$
- $P(bad) \le 1/2^{11n}$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

Analysis of [MandalPN10]

- Transcript is bad if $|N(z)| \geq \frac{24q^2}{2^n-q}$ for some z
- $\varepsilon \leq 96q^3/2^{2n}$
- $P(bad) \le 1/2^{11n}$

But...

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

Analysis of [MandalPN10]

- Transcript is bad if $|N(z)| \geq \frac{24q^2}{2^n-q}$ for some z
- $\varepsilon \leq 96q^3/2^{2n}$
- $P(bad) \le 1/2^{11n}$

But...

• Attacker can assure $|N(z)| \geq q/2$ trivially

$$\longrightarrow \mathbf{P}(\mathsf{bad}) = 1$$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

New Analysis

 \bullet Transcript is bad if $\sum_{i=1}^q |N(y_i^1 \oplus y_i^2)| > C$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

- Transcript is bad if $\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > C$
- $\varepsilon \le C/2^n + q^3/2^{2n}$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

- Transcript is bad if $\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > C$
- $\varepsilon \le C/2^n + q^3/2^{2n}$
- ullet \mathbf{P} (bad) reduces to sum-capture problem

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

- Transcript is bad if $\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > C$
- $\varepsilon \leq C/2^n + q^3/2^{2n}$
- P (bad) reduces to sum-capture problem
 - Given random set Z of size q, find U,V of size q that maximize the number of solutions to $u \oplus v = z$
 - Earlier applications: hashing, signatures, Even-Mansour

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

- Transcript is bad if $\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > C$
- $\varepsilon \leq C/2^n + q^3/2^{2n}$
- ullet \mathbf{P} (bad) reduces to sum-capture problem
 - Given random set Z of size q, find U,V of size q that maximize the number of solutions to $u\oplus v=z$
 - Earlier applications: hashing, signatures, Even-Mansour
 - Using [ChenLL+14]:

$$\mathbf{P}\left(\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > 3q^3/2^n + 3n^{1/2}q^{3/2}\right) \le 2/2^n$$

$$N(z) = \{(j, j') \in \{1, \dots, q\}^2 \mid y_j^1 \oplus y_{j'}^2 = z\}$$

- Transcript is bad if $\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > C$
- $\varepsilon \leq C/2^n + q^3/2^{2n}$
- P (bad) reduces to sum-capture problem
 - Given random set Z of size q, find U,V of size q that maximize the number of solutions to $u\oplus v=z$
 - Earlier applications: hashing, signatures, Even-Mansour
 - Using [ChenLL+14]:

$$\mathbf{P}\left(\sum_{i=1}^{q} |N(y_i^1 \oplus y_i^2)| > \underbrace{3q^3/2^n + 3n^{1/2}q^{3/2}}_{C}\right) \le 2/2^n$$

indistinguishability $(p_i \; {\sf secret})$	$\underline{}$	bound	reference
	≥ 1	$2^{\frac{k}{k+1}n}$	[Lucks00]
	2	$2^n/n^{2/3}$	[Bellarel99]
	2	2^n	[Patarin08]
	≥ 3	$2^{\frac{2k+1}{2k+2}n}$	[CogliatiLP14]
	≥ 3	2^n	

indifferentiability $(p_i $ public $)$	k	bound	reference
	2	$2^{n/2}$	[MandalPN10]
	2	$-2^{2n/3}$	-[MandalPN10]-
	≥ 2	$2^{2n/3}$	

XOR of Secret Permutations

- Optimal 2^n security
- Closes the case

XOR of Public Permutations

- Bug in earlier analysis
- New security analysis up to $2^{2n/3}$

XOR of Secret Permutations

- Optimal 2ⁿ security
- Closes the case

XOR of Public Permutations

- Bug in earlier analysis
- New security analysis up to $2^{2n/3}$
- Conjecture: 2^n indifferentiability for $k \geq 2$
 - Bottleneck: bad transcripts
 - ullet Description of simulator thwarted to k=2

XOR of Secret Permutations

- Optimal 2ⁿ security
- Closes the case

XOR of Public Permutations

- Bug in earlier analysis
- New security analysis up to $2^{2n/3}$
- Conjecture: 2^n indifferentiability for $k \geq 2$
 - Bottleneck: bad transcripts
 - Description of simulator thwarted to k=2

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Indifferentiability of f_k : Simulator

Forward Query $\mathcal{S}(x)$

- 1. Generate random y^3, \ldots, y^k permutation-wise
- 2. Query $\mathcal{R}(x)$
- 3. Generate random y^1, y^2 permutation-wise such that

$$y^1 \oplus y^2 = \mathcal{R}(x) \oplus y^3 \oplus \cdots \oplus y^k$$

Indifferentiability of f_k : Simulator

Forward Query $\mathcal{S}(x)$

- 1. Generate random y^3, \ldots, y^k permutation-wise
- 2. Query $\mathcal{R}(x)$
- 3. Generate random y^1, y^2 permutation-wise such that

$$y^1 \oplus y^2 = \mathcal{R}(x) \oplus y^3 \oplus \cdots \oplus y^k$$

Inverse Query $\mathcal{S}_{\ell}^{-1}(y^{\ell})$ (now: $\ell=1$)

- 1. Generate random y^2, \ldots, y^{k-1} permutation-wise
- 2. Generate random x permutation-wise and query $\mathcal{R}(x)$
- 3. Set $y^k = \mathcal{R}(x) \oplus y^1 \oplus \cdots \oplus y^{k-1}$

Indifferentiability of f_k : Simulator

Forward Query $\mathcal{S}(x)$

- 1. Generate random y^3, \ldots, y^k permutation-wise
- 2. Query $\mathcal{R}(x)$
- 3. Generate random y^1, y^2 permutation-wise such that

$$y^1 \oplus y^2 = \mathcal{R}(x) \oplus y^3 \oplus \cdots \oplus y^k$$

Inverse Query $\mathcal{S}_{\ell}^{-1}(y^{\ell})$ (now: $\ell=1$)

- 1. Generate random y^2, \ldots, y^{k-1} permutation-wise
- 2. Generate random x permutation-wise and query $\mathcal{R}(x)$
- 3. Set $y^k = \mathcal{R}(x) \oplus y^1 \oplus \cdots \oplus y^{k-1}$
- 4. If y^k collides with old value: return to 2.